
Section 7
Display ITerminal
Management Processor
(TMP)

• I

From: ftp://bitsavers.informatik.uni-stuttgart.de/components/natio-
nal/_dataBooks/1988_National_Microcontrollers_Databook.pdf

Section 7 Contents
TMP.. 7-3
NS405 Series Display Terminal Management Processor (TMP) 7-4
AB-14 Throughput Considerations in NS405 System Planning . 7 -43
AB-16 NS405-Series TMP External Interrupt Processing................................. 7-44
AN-354 TMP Rowand Attribute Table Lookup Operation................................ 7-46
AN-355 TMP-Dynamic RAM Interfacing........................... 7-53
AN-367 TMP External Character Generation. 7-58
AN-369 NS405 TMP Logic Analyzer.............................. 7-61
AN-374 Building an Inexpensive But Powerful Color Terminal. 7-68
AN-399 TMP Extended Program Memory.......................... 7-73

7-2

~National
D Semiconductor

TMpTM

Terminal Management Processor
The TMP (NS405 series) is a single-chip CRT terminal dis­
play controller. The TMP is supported by the MOLETM de­
velopment system and replaces all the following LSI circuits
commonly found in a terminal:

• Microprocessor

• Program ROM

• 64 x 8 RAM

• CRT controller

• DMA controller

• Character generator

• UART
• BAUD rate generator

• Parallel liD controller

• Timer
The TMP offers complete CRT control over a wide scope of
high-density circuit applications including phones, keyboard
integration assignments, logic analyzers and more.

The NS455 Terminal Management Processor (TMP) demo
board is available for design support.

7-3

Highly compact, the TMP board reduces previously neces­
sary board space dramatically while providing 100% emula­
tion of a classic low-end terminal. The board can also be
used for TMP evaluation or as a vehicle for designing-in the
NS405 device.

The board which is controlled by a preprogrammed NS455,
needs only a video monitor, ASCII encoded keyboard, and
power supply to provide your complete terminal. Should you
wish to write your own program, no problem.

The cross-assembler software provides the capability. The
board will execute custom programs through up to 8k of off­
chip memory.

The TMP demo board comes complete with operating man­
ual, program source listing, board schematic, board layout,
and all necessary connectors.

When you're ready to design your own TMP system, turn to
National's MOLE development system. By using this sys­
tem-comprised of brain board, personality board and soft­
ware-you bring dedicated development support to the
TMP chip, making design-in extremely fast and simple.

• I

U) r--,
o
~
U)
z ~National

D Semiconductor
PRELIMINARY

NS405-Series Display/Terminal Management
Processor (TMP)

General Description
The NS405 is a CRT terminal controller on a chip. It is a
microcomputer system which replaces the following LSI cir­
cuits commonly found in a CRT data terminal:

- Microcomputer - Baud Rate Generator

- CRT Controller - Interrupt Controller

- DMA Controller - Parallel 110 Controller

- Character Generator - Timer
-UART

In addition the NS405 includes powerful attribute logic, two
graphics display modes, and fast video output circuits.

The NS405 is primarily intended for use in low-cost termi­
nals, but contains many features which make it a superior
building block for "smart" terminals and word processing
systems.

The NS405 interfaces easily to the display monitor, key­
board, display memory, and liD ports. The architecture and
instruction set are derived from· the 8048-series microcon­
trollers. The instruction set has been enhanced and the ar­
chitecture tailored to allow the NS405 CPU to efficiently
manage a large display memory and an extensive interrupt
environment.

The TMP can be used to easily and inexpensively add a
display to many systems where it was previously impracti­
cal, it is not limited to terminal applications.

Block and Connection Diagrams

SI
UART

so

HLOA, SC CLR,
1Nff, IP. HOLD

1100-1/07,
REO-RE12

SBO-SB15 FI CLK INTENS/
1lIm

XTAL1
XTAL2
RESET
Vss
Vee =} VIDEO vs OUT

TLlDD/5526-1

Features
• Enhanced 8048 instruction set and architecture
• Up to 8k x 8 ROM external with ROM expand bus
• On-board RAM 64 x a
• Programmable display format
• On-board video memory management unit
• 16-bit bidirectional display memory bus (direct video

and attribute RAM interface)

• Built-in timer
• Real-time clock (may be programmed for 1 Hz)
• Video control signals
• Eight independent attributes
• Pixel and block graphics display modes
• Programmable cursor characteristics
• Programmable CRT refresh rate
• Light pen feature
• UART, programmable baud rate up to 19.2k baud
• Character generator (128 characters 7 x 11 max)
• Single 5-volt supply @ 110 mA (typ)
• Up to 18 MHz video dot rate (12 MHz CPU clock)
• 48-pin package
• a-bit parallel liD port (multiplexed with external ROM)
• Extensive liD expansion capabilities
• Up to 64k by 8 or 16 video RAM

7-4

SBO
SB1

SB2

SB3

Top View TL/DD/5526-2

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, Power Dissipation 1.5W
contact the National Semiconductor Sales Office/ ESD 2000V
Distributors for availability and specifications. 'EA, SI and VSYNC may be subjected to Vss + 15V.
Temperature Under Bias O·Cto +70·C Note: Absolute maximum ratings indicate limits beyond
Storage Temperature - 65·C to + 150·C which permanent damage may occur. Continuous operation
All Input or Output Voltages at these limits is not intended; operations should be limited

with Respect to VSS· -0.5V to + 7.0V to those conditions specified under DC Electrical Character-
istics.

DC Electrical Characteristics
T A = O·C to + 70·C, Vcc = + 5V ± 10%, Vss = OV, unless otherwise specified

Symbol Parameter Test Conditions Min Max Units

VIL1 Input Low Voltage (All Except XTAL 1, XTAL2, RESET) -0.5 O.B V

VIH1 Input High Voltage (All Except XTAL 1, XTAL2, RESET) 2.0 Vcc V

VIL2 Input Low Voltage (XTAL 1, XTAL2, RESET) -0.5 0.6 V

VIH2 Input High Voltage (XTAL 1, XTAL2, RESET) 3.B Vcc V

VOL Output Low Voltage (All Except INTENS, VOl IOL = 2.0 mA 0.4 V

VOH Output High Voltage (All Except INTENS, VOl IOH = -125 itA 2.4 Vcc V

VOL Output Low Voltage (INTENS, VOl IOL = 5.0 mA 0.4 V

VOH Output High Voltage (INTENS, VOl IOH = - 500 itA 2.4 V

IlL Input Leakage Current (EA, INT, SI) Vss :5: VIN :5: Vcc ±10 itA

IOL Output Leakage Current Vcc ~ VIN ~ Vss + 0.45 ±10 itA (ROM Expand Bus, High Impedance State)

IOL Output Leakage Current Vcc ~ VIN ~ Vss + 0.45 ±100 itA (System Bus, High Impedance State)

Icc Total Supply Current TA = 25·C 150 mA

AC Electrical Characteristics
TA = o·c to +70·C, Vcc = +5V ±10%, Vss = ov, unless otherwise specified

Symbol I Parameter I Min I Max I Units

CPU AND ROM EXPAND BUS TIMING

FXTAL Crystal Frequency 3 1B MHz

Fcpu CPU Frequency 3 12 MHz

tCY CPU Cycle Time 1.25 7.5 its

tOF Video Dot Time 55.5 333.3 ns

tLL ALE Pulse Width (Note 1) 125 ns

tAL Address Setup to ALE (Note 1) 55 ns

tLA Address Hold from ALE (Note 1) 40 ns

tcc Control Pulse Width PSEN, RD (Note 1) 250 ns

tOA Data Hold (Notes 1, 4) 0 100 ns

tAD PSEN, RD to Data In (Note 1) 220 ns

tAD Address Setup to Data In (Note 1) 360 ns

tAFC Address Float to RD, PSEN (Notes 1, 5) 0 ns

tCAF PSEN to Address Float (Notes 1, 5) -10 +10 ns

tOAL Data Setup to ALE (REO-7, 11, 12) (Note 1) 55 ns

tALO Data Hold from ALE (REO-7, 11, 12) (Note 1) 40 ns

tCIS Control Input Setup to ALE (REB, 9, 10) (Note 1) 240 ns

tCIH Control Input Hold from ALE (REB, 9, 10) (Notes 1, 4) 75 125 ns

7-5

z en
~
<:)
c.n

•

AC Electrical Characteristics
TA = O°C to + 70°C, Vee = + 5V ± 10%, Vss = OV, unless otherwise specified (Continued)

Symbol I Parameter I Min I Max I Units

SYSTEM BUS TIMING

tEL RAM ALE Low Time (Note 1) 250 ns

tEH RAM ALE High Time (Note 1) 100 ns

tAS Address Setup to RAM ALE (Note 1) 20 ns

tAH Address Hold from RAM ALE (Note 1) 10 ns

tRR RAM RD Width (Note 1) 210 ns

tAR Address Setup to RAM RD (Note 1) 80 ns

tRRO Data Access from RAM RD (Note 1) 140 ns

tROR Data Hold from RAM RD (Notes 1, 4) 0 60 ns

tWFI FIFO In Clock Width (Note 1) 210 ns

tww RAM WR Strobe Width (Note 1) 130 ns

tAW Address Setup to RAM WR (Note 1) 120 ns

tow Data Setup to RAM WR (Note 1) 10 ns

two Data Hold from RAM WR (Note 1) 20 ns

VIDEO TIMING

tOF
Dot Period = ~ (Note 1)

55 ns

tVID Video Blank Time (Note 1) 5 15 ns

tVI Skew, Intensity to Dot 0 (Note 1) -15 15 ns

tFOV FIFO Out Clock to Dot 0 (Note 1) 15 ns

tWFOH FIFO Out Clock Width High (Note 1, Note 2) 55 165 ns
.% CPU cycle.

··1 Dot time is 55 ns.
Note 1: Control outputs CL = 80 pF; ROM Expand Bus outputs CL = 150 pF; System Bus outputs CL = 100 pF; VOUT & INTENS outputs CL = 50 pF; FXTAL =
18 MHz; Fcpu = 12 MHz. XTAL1 & XTAL2 driven externally per Figure 12b with 50% duty cycle.
Note 2: FOGO< duty cycle is shown above.
Note 3: Hold request is latched. It is honored at the start of the next vertical retrace.
Note 4: Max spec. listed for user information only. to prevent bus contention. Maximum value not tested.
Note 5: Not tested.

Input Hold Times
TA = 25°C. Vee = +5V ±10%, Vss = OV

Character FIFO Out FIFO Out Input Min Active Time
Cell Width HIGH LOW Reset 50 ms (power up)

6 1 dot 5 dots 5 CPU Cycles (after power up)
7 2 dots 5 dots External Interrupt 2CPU Cycle
8 2 dots 6 dots
9 3 dots 6 dots Light Pen 1 CPU Cycle

10 3 dots 7 dots I/O Input 1 CPU Cycle

Hold Request 1 CPU Cycle (Note 3)

FIFO

Fall through should not be greater than 4 character times
(character time = 1/fXTAL x #dots/cell).
Throughput rate must be at least the character rate (charac-
ter rate = 1 Icharacter time).

7-6

Capacitance T A = 25°C, VCC = Vss = OV

Symbol Parameter Test Conditions Min Max Units

CIN Input Capacitance Fc = 1 MHz (Note 5) 10 pF

COUT Output and Reset Unmeasured Pins Returned to Vss (Note 5) 20 pF

AC Electrical Characteristics in CPU Cycle Time
CPU AND ROM EXPAND BUS TIMING (FOR REFERENCE ONLY)

Symbol Parameter Typ

tll ALE Pulse Width 14tCY/50

tAL Address Setup to ALE 8 tCY/50

tLA Address Hold from ALE 6tCY/50

tcc Control Pulse Width PSEN 24 tCY/50
RD 36 tCY/50

tCY CPU Cycle Time 15
60 ley/so = 15/fcPU = f . 1 . 15

XTAl"" or..,..

tOR Data Hold -2 tCY/50

tRO Control Pulse to Data In PSEN 18 tCY/50
RD 30 tCY/50

tAD Address Setup to Data In 32 tCY/50

tAFC Address Float to PSEN 2 tCY/50
RD 2 tCY/50

tCAF PSEN to Address Float o tCY/50

tOAl Data Setup to ALE REO-7 6 tCY/50
RE8-10 -2 tCY/50
RE11-12 16 tCY/50

tAlO Data Hold from ALE REO-7 2 tCY/50
RE8-12 6 tCY/50

SYSTEM BUS TIMING (FOR REFERENCE ONLY)

Symbol Parameter
Ticks

Min Max

tEL RAM ALE Low Time 14 tCY/60 - 42 ns

tEH RAM ALE High Time 6 tCY/50 - 25 ns

tAS Address Setup to RAM ALE 4 tCY/50 - 60 ns

tAH Address Hold from RAM ALE 2 tCY/50 - 40 ns

tRCY Read or Write Cycle Time

tRR RAM RDWidth 12 tCY/50 - 40 ns

tAR Address Setup to RAM RD 6 tCY/50 - 45 ns

tRRO Data Access from RAM RD 10 tCY/SO - 70 ns

tROR Data Hold from RAM RD

tWFI FIFO In Clock Width 12 tCY/50 - 40 ns

tww RAM WR Strobe Width 8 tCY/60 - 27 ns

tAW Address Setup to RAM WR 10 tCY/50 - 90 ns

tow Data Setup to RAM WR 2 tCY/50 - 30 ns

two Data Hold from RAM WR 2 tCY/60 - 20 ns

7-7

z en
~ o
U1

,.

it)
Q

Ch Timing Waveforms
z

ALE

iiii

REO-RE7

REB-RE1O

ROM Expand Bus Timing
(In Port Instruction Is Shown)

1---------ICy --------,/

I--+---IAD

-ILA

ADDRESS (HI·Z IF EXTERNAL
ROM NOT USEO) INPUT

RE11-RE12
ADDRESS (REMAIN DATA OUTPUT

IF EXTERNAL ROM NOT USED)
ADDRESS (REMAIN DATA OUTPUT

IF EXTENAL ROM NOT USED)
DATA OUTPUT (SC CLR. HLOA)

·Remain 110 OUTPUT if External ROM not used.

··110 Data input or 2nd ROM byte of 2 byte instruction. Otherwise remain 110 OUTPUT.

System Bus Timing

RAM ALE

IRCY .1

IEH-I IEL , 'l ,
I

IWfI

"\ I
ONLY ON A VIDEO READ J

IRR

"\
j

~~ I, -IRD~ IU-I-IAH- IRRD

ADDRESS OUT ' DATA IN X ADDRESS OUT
J \.

BUS

I---tww-
)

I\. I
I lAW

_!::::.IAS-I-IAH-li===tow- I---tWD=::::j

.A ADDRESS OUT DATA OUT ADDRESS OUT BUS

7-8

TL/DD/5526-3

TL/DD/5526-4

Timing Waveforms (Continued)

Video Timing

DDT NUMBER
(USING 7·WIOE CELLI

OFF
VIOEO--I---J

~ ______________________ r---\ ___ _

Scan Count Clear Timing

HORIZONTAL
BLANKING BEGINS

HORIZONTAL __
SYNC

I I I

~
CHARACTER:

WIDTH TIt.4ES:
SCAN COUNT -----.-t

CLEAR

For external character generation this edge Is used to clock CLEAR
Into scan line counter. The edge must come before Scan Count Clear goes
away, but not before the video controller has brought In all necessary
display Information for the last scan line.

5S

7-9

HORIZONTAL
BLANKING BEGINS

I I

~
CHARACTER:

WIDTH TIt.4ES:

TL/DD/5526-5

: FIRST SCAN LINE IN
: NEXT ROW BEING
I DISPLAYED
I

I

TL/DD/5526-6

z en
0I:loo
<:)
U'1

II
I

SI

SO

ALE

RAM ALE
RAM WR

~
RAM RO

FI CLK
a PSEN

iW
31

UART CONTROL
REGISTERS

2x8

BAUD RATE
CONTROL REGS.

2xB

UART
STATUS REG.

DOT CLK

- - :1 VERT
DISPLAY MEMORY "';E;';;O;';';R -----'

CONTROL REGISTERS I
7x16

DISPLAY MEMORY
CONTROL REGISTERS II

3x8

DISPLAY MEMORY
L __

1-16 16

SBD-SB15

REAL
TIME

INTERRUPT

NS405-Series Detailed

RAM
64x8

RE12 REll RE1D REg RE8
XTALl XTAl2 HLOA SC CLR INTR IP HOLO EA

ATTRIBUTE
LOGIC

L. _~_.J

-;D~O;;;O:- ;JINTENSITY

REGISTER

SYS~~~I~~:~ROL ICONTROL

VIDEO CONTROL I

r.------:1
I I HORIZONTAL

CONTROL CHARACTER

DOT I
CLK -+t

FO CLK

REGISTERS

SYNC. BLANK.
UNGTH

VERTICAL
CONTROL

REGISTERS

SYNC. BLANK.
LENGTH

CONTROL LOGIC

CONTROL
REGISTERS

SCAN
CONTROL

REGISTERS

BLINK
REGISTER

..2:.0~D~U!......J L

CRT REFRESH AN' J
---- -

VIDEO OUTPUT
(VOl

25

INTENSI
FO CLK

Vee Vss

32

RESET

REO. 1/00
RE1.llOl
RE2.I/02

RE3.I/03
RE4.1104

RES. 1105

RE6.1106
RE7.I/07

HORIZONTAL
SYNC

NS405

m
o
()
;::II\"

c
iii"
ea
D)

3

TLlDD/5526-7

1.0 Functional Pin Descriptions
1.1 SUPPLIES

Pin Name
48 Vcc- Power
24 Vss - Ground Reference

1.2 INPUT SIGNALS
23, 22 XT AL 1, XT AL2 - Crystal 1, 2:

29 EA - External Access:

32 RESET

34 SI - Serial Input:
1.3 OUTPUT SIGNALS

33 SO - Serial Output:

21 ALE - Address Latch Enable:

30 PSEN - Program Store Enable:

31 RD - Read Port Data:

28 HS - Horizontal Sync

27 VS - Vertical Sync Output:

26 VO - Video Output:

25 INTENSIFO CLK

17 VID CLK/FI CLK - Video Dot Clock Out!
FIFO IN CLOCK

Function
5V ±10%

Crystal connections for clock oscillator (3-18 MHz).
Pull HIGH (V1H2)
An active low input that initializes the processor. The RESET input is also
used for internal ROM verification.

Drives receiver section of UART (true data).

Driven by transmitter section of UART (true data).

ROM address is available on the ROM Expand Bus and may be latched
on the falling edge of ALE. Port output data may be latched on the rising
edge of ALE. ALE pulses are always present, even if EA is tied low.

Enable external ROM output drivers when low. PSEN is idle (high) when
the CPU fetches from internal ROM.

Accept Port input data on ROM Expand Bus REO-RE7 while low. ROM
Expand Bus is in high impedance state while RD is low.

The rising edge of HS is controlled by the Horizontal Sync Begin Register
and the falling edge is controlled by the Horizontal Sync End Register. HS
is disabled (low) if bit 5 of the Video Control Register = O.

The falling edge of VS is controlled by the Vertical Sync Begin Register
and the rising edge is controlled by the Vertical Sync End Register. VS is
at TRI-STATE if bit 5 of the Video Control Register = O.

High = beam on, low = beam off. VO is disabled (low) if bit 5 of the
Video Control Register = O.

(Shared pin) INTENS Signal under attribute control may be used to switch
the bistable brightness of display characters.
FIFO Out Clock may be used to clock data from an external FIFO in
synchronism with data from the internal FIFO.
Both CANNOT be used simultaneously.

(Shared pin) The rising edge of the Video Dot Clock may be used to clock
the data out of the video output pin. FIFO In Clock may be used to clock
data from an extended attribute RAM into an external FIFO in
synchronism with the data loaded into the internal FIFO.
Both CANNOT be used simultaneously.

18 RAM ALE - RAM Address Latch Enable: RAM address is available on the System Bus and may be latched on the
falling edge of RAM ALE. Only operational when Display RAM accesses
being performed. Otherwise high.

20 RAM RD - RAM Read: Enable display RAM data onto the System Bus when RAM RD is low.

19 RAM WR - RAM Write: Data to RAM is available on the System Bus and may be written at the
rising edge of RAM WR.

1.4 BUS-I/O
1-8 SBO-SB7 - System Bus 0-7:

9-16 SB8-SB15 - System Bus 8-15:

35-47 REO-12- ROM Expand Bus 0-12:

40-47 REO-RE7

Display RAM address is output while RAM ALE is high and may be
latched on the falling edge of RAM ALE. System Bus accepts data input
while RAM RD is low and outputs data while RAM WR is low.

Normally, Display RAM address is output and held on these pins for the
full read or write cycle. However, if bit 4 of the System Control Register is
set, these pins function bidirectionally like SBO-SB7 to allow 16-bit data
words for attribute operation.

Used for program ROM expansion as described below. Time multiplexed
with 1/0 port and system control signals. 1/0 port and system control
signals only if no external ROM used.

Low order ROM address is output and may be latched on the falling edge
of ALE. Enable ROM data to this Bus when PSEN is low. Enable 1/0 port
input data to the Bus when RD is low. Use the rising edge of ALE to latch

port output data.

7-11

z en
~
o
U1

•

~ r---~
o
"'II:f'
tJ)
Z

1.0 Functional Pin Description (Continued)

Pin Name
39-35 RE8-RE12

37 INTR - Interrupt: RE1 0

38 LP - Light Pen Interrupt: RE9

39 HOLD - HOLD request: RE8

35 HLDA- Hold Acknowledge: RE12

36 SC CLR - Scan Count Clear: RE11

·Unused control inputs must be terminated

2.0 Functional Description
2.1 CPU

Function
Five most significant bits of the ROM address are output during ALE and
remain stable until data is read in during PSEN. These pins are
multiplexed with the HLDA, INTR, LP, SC CLR, and HOLD signals.
An active low input that interrupts the processor if the external interrupt is
enabled. Because it shares a pin with RE10, INTR may be driven directly
only if no external ROM is used (EA is low). Otherwise must be driven
through a 3.9k resistor. *
An active low input that interrupts the processor if internal interrupts are
enabled and bit 5 in the Interrupt Mask Register is set. Because it shares
a pin with RE9, LP may be driven directly only if EA is low. Otherwise,
must be driven through a 3.9k resistor. *
When high, requests that the NS405 enter the Hold mode. When in the
Hold mode the System Bus will be in a high impedance state. The Hold
mode is granted at the beginning of the next vertical retrace. Because it
shares a pin with RE8, HOLD may be driven directly only if EA is low.
Otherwise, must be driven through a 3.9k resistor. *
This output is asserted in response to Hold and provides handshake
capability with another processor (active high). For more detailed
information see Section 3.0 Slave Processing. Because HLDA shares a
pin with RE12, the HLDA state is preset only during the interval preceding
the rising edge of ALE. However, if no external ROM is used, HLDA is a
steady state output and need not be latched externally.
This output clears an external scan counter when used with an external
character generator. It is a low going pulse which occurs during the
horizontal retrace preceding the first scan line of each character row.
Because SC CLR shares a pin with the RE11, the correct SC CLR state is
present only during the interval preceding the rising edge of ALE.
However, if no external ROM is used, SC CLR is a steady state output
and need not be latched externally.

The CPU of the NS405 is patterned after the 8048 single
chip microcomputer (see Figure 1) .

...-----r---.., 12 MHz

CPU
DIVIDE

MAX

1 INSTRUCTION
CYCLE

+32

RESET

EA
EXT INT

INTERNAL
INTERRUPT MASK

FIGURE 1. NS405 Series CPU Block Diagram

7-12

REB-RE12

REO-RE7

t-----+iiii
t----+PSEN
t----+ ALE

Tl/OO/5526-8

2.0 Functional Description (Continued)

2.1.1 Accumulator - High Accumulator

In addition to the regular 8-bit Accumulator, there is an 8·bit
High Accumulator extension to facilitate the 16-bit opera­
tions required for display memory management. The HACC/
ACC pair is usually used in conjunction with the 16-bit RAM
pointer registers (RA, RO and RB, R1, CURSOR, HOME,
BEGD and ENDD) to effect video data transfers. In addition,
external attribute memory is loaded in a 16-bit transfer oper­
ation. Any instruction which causes a carry or borrow out of
the low accumulator will affect the high accumulator (see
Figure 2).

Auxiliary carry is used only when converting the accumula­
tor contents from binary to BCD (binary coded decimal) us­
ing the DA A instruction. The auxiliary carry flag can be
cleared by moving a zero into bit 6 of the program status
word.

HIGH ACCUMULATOR ACCUMULATOR

CARRY AUXILIARY CARRY

FIGURE 2. CPU Accumulator

2.1.2 Program Counter (PC)

TLlDD/5526-9

The Program Counter is a 13·bit wide register which pro­
vides program addressing for the CPU. The lower 11 bits
operate like a conventional program counter while the upper
2 bits are actually latches. These 2 latches are automatically
loaded from the bank select flip-flops (PSW bits 3, 4) when­
ever a JMP or CALL instruction is executed. The bank se­
lect flip-flops in turn are only modified upon the execution of
a Select Memory Bank Instruction or modification of the
PSW (see Figure 3).

CONVENTIONAL PROGRAM COUNTER

BANK SELECT BITS (LATCHES)
(LOADED BY EXECUTION OF JMP DR CALL)

TL/DD/5526-10

FIGURE 3. TMP Program Counter

2.1.3 Program Memory

Memory is subdivided into 2k banks with accesses limited to
the currently selected bank unless a Bank Change se­
quence has been executed. Upon reaching the end of a
memory bank, the program counter will wrap around and
point to the beginning of the current bank.

Each bank is further subdivided into pages of 256 bytes
each, with 8 pages in every bank. The conditional JUMP
instructions are restricted to operate within the memory
page that they reside in.

Because of the sequence which the CALL instruction exe­
cutes when pushing and loading the PC, it is possible to
easily call and return from subroutines located in different
memory banks (see Figure 4).

Upon executing an RET or RETR instruction for a call from
one memory bank into another, a SEL MBx instruction
should be excuted to restore the memory bank select flip­
flops to their original bank. However, no SEL MBx is needed
after an interrupt since the flip-flops were never modified.

7-13

8191

EXTERNAL

--
~

71&151.13121110 ~

ADDRESS 0007
INTERNAL INTERRUPT
VECTOR

ADDRESS DDD3
EXTERNAL INTERRUPT
VECTOR

ADDRESS DDDD
RESET VECTOR

TLlDD/5526-11

FIGURE 4. Program Memory Map

2.1.4 Program Status Word Bit Assignments

Bit
Contents

Position

0 Stack Pointer Bit, SO
1 Stack Pointer Bit, S1
2 Stack Pointer Bit, S2
3· Memory Bank Select Bit 0
4· Memory Bank Select Bit 1
5· Register Bank Select Bit (0 = Bank 0,

1 = Bank 1)
6· Auxiliary Carry. A carry from Bit 3 to Bit 4

generated by an add operation. Used only by
the decimal adjust (DA A) instruction.

7* Carry. A bit indicating the preceding
operation resulted in an overflow or an
underflow from the 8-bit accumulator.

'Note 1: Bits 3 through 7 are saved on the stack by subroutine calls or
interrupts. Bits 3 and 4 are restored upon execution of an RET instruction,
whereas all 5 bits are restored by RETR.

Note 2: FO is not saved on the stack (as in an 8048).
Note 3: Bits 0-5 cleared on a RESET.

2.1.5 Stack Pointer (SP)
The stack pointer is an independent 3-bit counter which
points to designated locations in the internal RAM that
holds subroutine return parameters. The stack itself is locat­
ed in RAM locations 8-23 (see Figure 5).
Each entry in the stack takes up two bytes and contains
both the PC and status bits. When reset to zero, the stack
pointer actually points to locations 8 and 9 in RAM. Since
the stack pointer is a simple up/down counter, an overflow
will cause the deepest stack entry to be lost (the counter
overflows from 111 to 000 and underflows from 000 to 111).
Note: If the level of subroutine nesting is less than eight (8), the unneeded

stack locations may be used as RAM.

LOCATION POINTER

000

TL/DD/5526-12

Note: The odd numbered RAM bytes in the stack area have two (2) extra
bits to allow for storage of the bank select switch bits. This feature allows
interrupt routines and subroutines to be located outside the current 2k pro·
gram memory bank.

FIGURE 5. Typical Stack Composition

I •

~ r---~

o
'III:t'
(/)
Z

2.0 Functional Description (Continued)

2.1.6 Data Memory (On-Chip RAM)

The data memory nominally consists of 64 8-bit locations
and is utilized for working registers, the subroutine stack,
pointer registers and scratch pad. There are two sets of
working/pointer registers (RO-R7) which are selected by
the Select RAM Bank instruction. The stack area is located
in locations 8-23. Locations 32-63 contain the scratch pad
memory. To facilitate 16-bit Video Memory Management
there are two 8-bit extension registers (RA and RB) which
are associated with the RO and R1 registers respectively of
whichever RAM bank is currently selected (see Figure 6).
i.e., There is only one RA register and only one RB register.

-.-- 63
DDRESSED INDIRECTLY

BY RD AND R1

i- 32
31

DIRECTLY
ADDRESSABLE

WHEN 26
SELECTED 25

+ 24

23
DDRESSED INDIRECTLY

BY RD AND R1

i- 8

7

DIRECTLY
ADDRESSABLE 2

IRB I 1

IRA • D

SCRATCH PAD
RAM
32x8

BANK 1
WORKING REGISTERS

8x8

ALTERNATE R1

ALTERNATE RD

STACK REGISTER
OR USER RAM

16x8

BANK D
WORKING REGISTERS

8x8

R1
RD

~

~

PDlNTER
REGISTERS

POINTER
REGISTERS

REGISTER BANK D OR 1 IS SELECTED UNDER PROGRAM CONTROL.

TLlDD/5526-13

FIGURE 6. RAM Memory Map

2.1.7 Timer

The On-Board Timer is an 8-bit up counter which sets the
Timer Overflow Flag and generates an internal interrupt (if
enabled) whenever it overflows from FF to zero. The Timer
may be stopped, started, loaded and read from by the CPU.
The Timer clock is derived from the CPU clock as shown in
Figure 7. Whenever a Start Timer instruction is executed the
-:- 32 is initialized to its zero state to insure a full count mea­
surement. After overflow the timer keeps counting until the
next FF to zero overflow at which time the overflow flag will
be set and another interrupt generated. The overflow flag
can only be reset through the JTF and JNTF instructions.

TIMER
CLOCK

CPU
CLOCK

TL/DD/5526-14

FIGURE 7. Timer Clock Generation

2.1.8 Interrupts

The interrupt circuitry handles two generic classes of inter­
rupt conditions called Internal and External. Either class has
its own master control which can be activated through soft­
ware enable and disable instructions. On an interrupt serv­
ice the currently executing instruction is completed, then
two CPU cycles are used as the program counter and bits
3-7 of the PSW are pushed onto the stack and stack point­
er is incremented.

7-14

Then the interrupt vector address (3 or 7) is loaded into the
PC and service started. Whenever an interrupt condition is
being serviced all other interrupts of either class are locked
out until a RETR instruction is executed to conclude inter­
rupt service. If both an external and internal interrupt arrive
at the same time, the external interrupt is recognized first.

2.1.8.1 External Interrupt

The External Interrupt consists solely of the shared INTR/
RE10 pin. External interrupts on this pin will be detected if
the setup and hold times as shown in the timing diagrams
are met. This pin is a level sampled interrupt which means
that as long as the pin is low during the sampling window an
interrupt will be generated. In addition, the INTR pin is the
only external pin whose logic state can be directly tested
through software.

2.1.8.2 Internal Interrupts

The Internal Interrupts consist of seven internal operational
conditions plus the light pen arranged in an 8-bit wide regis­
ter as shown in Figure 8. Activation of an internal interrupt
condition causes a corresponding register bit to be set, Fig­
ure 9. Each internal interrupt may be individually masked out
through the Interrupt Mask register which has the same bit
assignments as the Interrupt register and can be loaded
from the accumulator. A zero in the Interrupt Mask register
inhibits the interrupt and a one enables it. Further interrupt
processing is as shown. To determine which of the eight
internal conditions caused the interrupt the CPU must read
the Interrupt register into the accumulator. To acknowledge
receipt of the interrupt certain bits are automatically cleared
on a read while others are reset upon service of the particu­
lar interrupt.

The conditions under which each of the interrupts are gen­
erated and cleared are as follows:

VERTICAL INTERRUPT·
END OF ROW INTERRUPT
UART TRANSMIT BUFFER EMPTY

L-_______ UART TRANSMITTER
EMPTY

L--_____ UART RECEIVE BUFFER FULL
L--______ LIGHT PEN INTERRUPT·

L-_____________ TIMER INTERRUPT·

L----------REAL TIME INTERRUPT·

TL/DD/5526-16

Note: The interrupt flags indicated by an asterisk (0) are cleared when the
Interrupt Register is read.

FIGURE 8. Internal Interrupt Register

Bit

o Vertical Interrupt-Generates an interrupt at the end of
the display row designated by the Vertical Interrupt
Register. Interrupt bit cleared on a CPU read of the
interrupt register. If VIR> Vertical Length Register no
interrupt will be generated.

2.0 Functional Description (Continued)

VERTICAL INTERRUPT ----4
READ----.......I

END DF ROW ---1"_ .. Ln_."J----~---l----JJ----.,
LOAD HOME ----.......I

UART TI BUFFER EMPTY ---1;::""':;::".:J1r---oo:::::::---t
LOAD Tl BUFFER ----........

UART TI REGISTER EMPTY ----4
TRANSFER FROM BUFFER ----........

UART RI BUFFER FULL ----f
READ RI BUFFER ----........

UGHT PEN ----f
READ ----........

ENABLE TIMER
INTERNAL -----f

INTERRUPTS
READ --__ --l

REAL·TIME ----I
READ ------I

TL/DD/5526-15

FIGURE 9. Internal Interrupt Processing

Bit

1 End of Row Interrupt-Generates an interrupt at the
end of each display row when the Current Row Start
Register is updated for the next row. Used in conjunc­
tion with the Row Sequencing Control Bit (5) in the
System Control Register to implement Row Pointer
Look-Up Tables and Horizontally Split Screens. Inter­
rupt bit cleared on a CPU write to the Home Register.
Does not generate interrupts for those rows blanked
during vertical blanking.

2 UART Transmit Buffer Empty-Generates an interrupt
when the Transmit Buffer empties out after dumping a
character into the Transmit Shift Register. Interrupt bit
cleared on a CPU write to the Transmit Buffer.

3 Transmitter Empty-Generates an interrupt when
BOTH the Transmit Buffer and Transmit Shift Register
are empty. The interrupt bit is cleared when the CPU
loads the transmit buffer.

4 UART Receiver Buffer Full-Generates an interrupt
when the Receiver Buffer fills up with a character from
the Receive Shift Register. Interrupt bit cleared on a
CPU read of the Receiver Buffer.

5 Light Pen Interrupt-Generates an interrupt on each
falling edge detected on the shared LP/RE9 pin. Since
only falling edges generate interrupts and the input is
sampled each CPU Cycle, a high level must be sam­
pled between falling edges in order to be considered a
new interrupt. This interrupt is used to latch the light
pen position registers. For further information see Light
Pen Description. Interrupt bit cleared on a CPU read of
the interrupt register.

7-15

Bit

6 Timer Interrupt-Generates an interrupt when the in­
ternal B·bit Timer overflows from FF to 00. Interrupt bit
cleared on a CPU read of the interrupt register.

7 Real-Time Interrupt-Generates interrupts at a soft­
ware programmable frequency that is generally in the
Hertz range. (See CPU Clock Generation.) Thus per­
mitting the implementation of a real-time clock or timer.
Interrupt bit cleared on a CPU read of the interrupt reg­
ister.

2.1.9 Clock Generation

All chip clocks are derived from the one external crystal
connected between pins 22 and 23. This master clock also
doubles as the video dot clock. The crystal frequency is
constrained to lie within the range of 3 to 1B MHz. The CPU
clock is derived from the crystal clock by either using it di­
rectly or by dividing down by a factor of 1.5 (Figure 10).

~CRYSTALUP
1 CPU CYCU::.. 1 ~ m".",

CPU
CLOCK

TLlDD/5526-17

FIGURE 10. CPU Clock Generation

The choice is software programmable through bit 0 in the
System Control Register. The exact selection is made in
consideration of the fact that the CPU clock must lie within
the range of 3 to 12 MHz. In addition, the choice of divide by
modes will also impact the display character cell width due
to the nature of the video controller. Specifically with -:- 1.5

z
en
0I:loo o
U1

• I

~ r---~
o -.::r
U)
Z

2.0 Functional Description (Continued)

the cell width must be ~ 8 dots wide whereas with -;- 1 the
cell width must be ~ 6 dots wide.

The low clock rates necessary to implement Cursor Blink­
ing, Character Blinking and the Real-Time Interrupt are de­
rived by passing the vertical sync frequency through a 5-bit
Blink Rate Divisor Register, (Figure 11). The resultant fre­
quency is used as the Cursor Blink Clock. This clock is then
further divided by 2 to yield the Character Blink and Real­
Time Interrupt Clocks. For example, to get a 1 Hz real time
interrupt, with a 60 Hz system, set the 5 bit Divisor Register
to 30 in order to yield a 2 Hz signal which is then divided by
2.

CHARACTER BLINK

REAL·TIME
INTERRUPT

VERTICAL
SYNC
FREQUENCY

TL/DD/5526-18

FIGURE 11. Blink Clock Generation

2.1.10 Oscillator Operation

The on-board oscillator circuit consists of a phase inverter
which, when used with an external parallel resonant tank,
(Figure 12a), will yield the required oscillator clock. Crystals
should be specified for AT cut and parallel resonant opera­
tion with the desired load capacitance (typically 20 pF). If
one desires to externally generate the clock and input it to
the chip, he may do so by driving XT AL 1 (pin 23) and XT AL2
(pin 22) as shown in Figure 12b.

,.----1 ::>0---.... -. TO INTERNAL CIRCUITS

XTAL1 23

FIGURE 12a. TMP Oscillator

+5V

..... ><>-.... ___;2~3 XTAL1

+5V

1K

>c~.-.-.;;2~2 XTAL2

TTL

Note: Use AS TTL devices if faster than 12 MHz.

TL/DD/5526-19

TL/DD/5526-20

FIGURE 12b. External Oscillator Mode

2.2 DISPLAY MEMORY CONTROLLER

The video display data resides in the external Video Memo­
ry which is managed by the Display Memory Controller
(DMC) through the System Bus. Either the CPU or the Video
Controller may access the display memory by presenting its
requests to the DMC. A maximum of three Video Memory
accesses (Reads or Writes) can be performed by the DMC
during each CPU instruction execution cycle. Because the
CPU can access the Video Memory, one may expand CPU
1/0 or data memory by memory mapping into the Video

7-16

Memory space. Up to 64k locations may be addressed over
the 16-bit System Bus. Data word widths may be 8 or 16 bits
depending upon whether external character attribute selec­
tion is used. The actual bus multiplexing mode is controlled
by bit 4 in the System Control register. The Video Controller
has the highest priority in obtaining Video Memory accesses
with the CPU getting in on a space available basis. If all
memory accesses are being taken by the Video Controller
(rarely), the CPU is put into a wait state should it try to ac­
cess video memory. To ease accessing requirements and
boost throughput the Video Controller utilizes a 4-level data
FIFO which is normally kept full of display data.

2.2.1 Display Memory Control Registers

In order to facilitate the management of video data for such
features as a Screen scroll, memory paging and row lookup
the DMC utilizes a number of registers which address the
video RAM space. Each of these pointers is 16 bits wide
and writable or readable from the 16-bit HACCI ACC pair as
the case may be. There are 2 video data accessing modes
as determined by bit 5 in the SCR, Sequential and Table
Lookup. The functions of the pointer registers vary depend­
ing upon the accessing mode selected. Their designators
are:

HOME = Home address register. Read and write.

BEGD = Beginning of diplay RAM. Write only.

ENDD = End of display RAM. Write only.

CURS = Cursor address register. Read, Write, Increment,
Decrement.

SROW = Status section register. Write only.

CRSR = Current row start register. Not directly accessed.

2.2.2 Sequential Access Mode

In this mode display data is accessed from sequential ad­
dress locations in the video memory until the data require­
ments for the current screen field are fulfilled. The location
from which the first display character is taken is the one
pointed to by the HOME register. By modifying the contents
of HOME one may implement a row scroll or paging opera­
tion. The BEGD and ENDD are used to control the wrap­
around condition when HOME gets near the end of avail­
able display RAM as determined by ENDD. In this instance,
when sequential accessing brings us to the end of memory
as pointed to by ENDD, the controller wraps around by
jumping back to the beginning of display memory as pointed
to by BEGD. The value in ENDD should be the last location
in display memory + 1. Also the size of the display memory
between BEGD and ENDD (ENDD - BEGD) must be an
integral number of display rows. The CURS in both access­
ing modes merely identifies the current cursor position in
display memory so that the cursor characteristics can be
inserted into the video at the appropriate character position.

In addition to the display of normal video data one may elect
to have a special status section displayed using data from a
separate section of video memory. The status section would
consist of an integral number of display rows on the bottom
of the screen. This feature operates by reloading the video
RAM pointer with the contents of SROW when the desired
row position at which to start the status section comes up.
The particular row at which the status display starts is de­
fined in the Timing Chain. Once the video RAM pointer is
jumped to SROW, data accessing again proceeds sequen­
tially from there until the data requirements for the current
field are satisfied.

2.0 Functional Description (Continued)

TMP Video Section

PEN
INPUT

Whether a status section is used or not, upon accessing all
of the data necessary to display a field, the video RAM
pointer is reset to HOME in preparation for the display of a
new field.

2.2.3 Table Lookup Mode

The CRSR (transparent to the user) is a pointer to the ad­
dress of the first character in a display row. It is required
because each time a scan line is displayed, all display char­
acters in the row must be accessed anew. Since a row is
made up of a number of scan lines, we must recover the
address of the first character in the row for each scan in the
row. After a row is done, the CRSR is normally advanced to
point to the first character in the next row.

In table look-up mode the starting memory location of the
next row is loaded into the CRSR from the HOME register at
the end of each row. The HOME register was presumably
updated by the CPU since the last end of row.

A CRSR load also generates the internal End of Row inter­
rupt which the CPU will use as a signal to reload HOME.
Finally, reloading HOME will clear out the End of Row inter­
rupt. If the status section feature is used, upon reaching the
begin status row location the CRSR will be loaded with
SROW instead of HOME for that row. After which CRSR will
revert back to load from HOME for the remaining rows on
the screen.

2.3 SYSTEM CONTROL REGISTER

Through the System Control Register (SCR) the user speci­
fies several important chip operational conditions. It is an
a-bit write only register which is loaded from the CPU accu­
mulator.

7-17

CPU BUS

H SYNC

V SYNC

VIDEO

TLIDD/5526-21

174815141312111rl

b: D) CPU CLOCK = CRYSTAL DOT CLOCK
DIVIDED BY 1

1) CPU CLOCK • CRYSTAL DOT CLOCK
DIVIDED BY 1.5

R CELL WIDTH
001) 6 DOTS PER CELL

(010) 7 DOTS PER CELL
(011) 8 DOTS PER CELL
(100) 9 DOTS PER CELL
(101) 10 DOTS PER CELL

SYSTEM BUS MUX M DOE
(D) OUTPUT ONLY ON S88-15
(1) 16 BIDIRECTIONAL UNES ON SBD-1I1

VIDEO MEMORY ACCESSI NG MODE
(0) SEQUENTIAL ROW START ADDRESSES
(1) TABLE LOOKUP

SHARED INTEN/FO CLK PIN CO NTROL
(

(

0) iNffilSJTY ATTRIBUTE SIGNAL GATED
TO EXTERNAL PIN

1) FIFO OUT CLK GATED TO EXTERNAL
PIN

SHARED Vio CLK/fiC[R PIN CoNTRo L
(1) VIDEO DOT CLOCK GATED

TO EXTERNAL PIN
(0) FIFO IN CLOCK GATED

TO EXTERNAL PIN

TL/DD/5526-22

OBit 0 is set to 1 by RESET and bit 7 is set to 0 by RESET.

FIGURE 13. System Control Register

2.4 VIDEO CONTROL REGISTER
Through the Video Control Register (VCR) the user speci­
fies several video display features to the chip. It is an a-bit
write only register which is loaded from the CPU accumula­
tor.

z en
.c:.
o
C11

2.0 Functional Description (Continued)

(0) BLINKING CHARACTER
(1) BLINKING FIELD (IF REVERSE VIDEO)
(0) BLINKING CURSOR
(1) STATIC CURSOR
(0) CURSOR OVERWRITES CHARACTER
(1) CURSOR REVERSES VIDEO

'-----(0) WHITE DOTS ON BLACK BACKGROUND
(1) BLACK DOTS ON WHITE BACKGROUND

~---- (0) INTERNAL ATTRIBUTE LATCHES
(1) EXTERNAL ATTRIBUTE MEMORY

'--------(0) V. SYNC, H. SYNC AND VIOEO
OUTPUT OISABUD. DISPLAY MEMORY
ACCESSES FROM THE CPU ONLY (NO
SCREEN REFRESH)

(1) V. SYNC, H. SYNC AND VIDEO
OUTPUT ENABLED. NORMAL DISPLAY
ACCESSES.

'----------(OX) NORMAL ALPHANUMERICS AND
BLOCK GRAPHICS

OBit 5 is set to 0 by RESET.

(10) EXTERNAL CHARACTER GENERATOR
(11) PIXEL GRAPHICS

TL/DD/5526-23

FIGURE 14. Video Control Register

CRYSTAL
CLOCK

COUNTERS

COMPARE
REGISTERS

DOT
COUNTER·MODULO
DETERMINED BY

SYSTEM
CONTROL
REGISTER

HORIZONTAL SYNC
BEGIN

HORIZONTAL SYNC
END

HORIZONTAL BLANK
BEGIN

HORIZONTAL SYNC

HORIZONTAL
VIDEO BLANK

2.5 CRT REFRESH LOGIC

All video timing and clocking signals are derived from a se­
ries of counters and comparators called the Video Timing
Chain. The chain is driven by the dotl crystal clock and ulti­
mately divides down to the very slow blink clock, (Figure
15). By having the program initialize the registers in the
chain a user may specify all aspects of video generation.

The chain also controls the size and placement of the cur­
sor and underline attribute within a character cell as well as
the cell partitioning for block graphics display. All totaled,
the chain consists of 14 wire only registers. They are loaded
indirectly by using the Timing Chain Pointer (TCP), a 4-bit
pointer to registers in the chain, and the MOV @TCP, A
instruction.

INSERT STATUS ROW

VERTICAL SYNC

VERTICAL
VIDEO BLANK

CHARACTER
BLINK/REAL TIME
INTR.

TL/DD/5526-24

FIGURE 15. TMP Video Timing Chain

2.5.1 TMP Timing Chain Registers

TCP Horizontal Timing

o Horizontal Length Register - HLR 7 bits

- Total number of character cells in a horizontal scan and retrace.

- Enter desired count - 1

Horizontal Blank Begin Register - HBR 7 bits (Characters/Row)

- Character position in horizontal scan after which horizontal blanking begins.

- Enter desired number of displayed characters/row - 1.

2 Horizontal Sync Begin Register - HSBR 7 bits

- Character position in horizontal scan after which horizontal sync begins (rising edge), HSBR :s: HLR.

- Enter desired count + 2.

7-18

2.0 Functional Description (Continued)

2.5.1 TMP Timing Chain Registers (Continued)

TCP Horizontal Timing

Horizontal Sync End Register - HSER 7 bits 3

- Character position in horizontal scan after which horizontal sync ends (falling edge), HSER ~ HLR.

- Enter desired count + 2.
Note: The polarity of the horizontal sync signal can be inverted by switching the values in the two horizontal sync registers.

TCP

4
High

Nibble

4
Low

Nibble

TCP

5

Character Height Definition

Character Scan Height Register - CSHR 4 bits (see Figure 16a)
- Scan line height of a character cell.
- Enter desired number of scan lines - 1.

Extra Scans/Frame - ES/F 4 bits
- Number of extra scans to be added to a frame if desired.
- Enter desired number of extra scans -1.

- To get no extra scans make ES/F = CSHR. ES/F must be ~ CSHR.

Vertical Timing

Vertical Length Register - VLR 5 bits

- Total number of display and retrace rows in a frame.

- Enter desired number of rows - 1.

6 Vertical Blank Register - VBR 5 bits (Rows/Screen)

7
High

Nibble

7
Low

Nibble

- Row position in vertical scan after which vertical blanking begins, VBR < VLR.

- Enter desired number of displayed rows - 1.

Vertical Sync Begin Register - VSBR 4 bits

Scan line position in first blank row at which vertical sync begins (falling edge). Sync starts 1 . char time after
blanking for that line starts (except when VSBR = CSHR sync will start 1 char time after blanking of the last
displayed scan line).

Enter desired scan line position - 1.

Vertical Sync End Register - VSER 4 bits

Scan line position after start of vertical sync at which vertical sync ends (rising edge). Sync ends 1 char time
after horizontal blanking for that scan line start.

Enter desired scan line position - 1.
Note: If VSER = VSBR there will be no vertical sync signal.

8 Status Row Begin Register - SRBR 5 bits

TCP

9
Upper
5 Bits

9
Lower
3 Bits

10

Row count after which the status row is inserted.

- Enter desired row position - 1.

Cursor and Graphics Control

Blink Rate 5 bits
- Divider driven by the vertical sync frequency to yield the slow cursor, character and real-time blink rates.
- Enter desired divisor - 1.

Blink Duty Cycle 3 bits
- Approximate ON time of blink signal.
- 000 = shortest, 111 = longest (100 = 50% duty cycle).

Graphics Column Register - GCR 8 bits

- Assign dot positions to left, middle and right character cell columns for block graphics operation.

11 Graphics Row Register - GRR 8 bits

Defines scan count at which middle row for block graphics characters begins (upper nibble) and at which
bottom row begins (lower nibble). The middle row (upper nibble) must be ~ 1.

Enter desired scan count - 1.

12 Underline Size Register - USR 8 bits (see Figures 16a, b, c)

- Defines the beginning (upper nibble) and ending (lower nibble) scan lines for the underline attribute. Values
must be ~ CSHR.

13 Cursor Size Register - CSR 8 bits (see Figures 168, b, c)

Defines the beginning (upper nibble) and ending (lower nibble) scan lines for the cursor. Values must be ~
CSHR.

7-19

z
U)
~
o
U1

.." o
~ en
z

2.0 Functional Description (Continued)

r-SCR BITS 1,2,3-1

r~

i~

SCAN UNE 0._.
b. Underline Size

Register = 90

SCAN UNE

c. Cursor Size
Register = 9A

SCAN LINE _

d. Cursor Size
Register = 48

TL/DD/5526-25 a. Character
Cell Format

Specification (OB, OC, 00, OE, OF)
may also be used

FIGURE 16. Underline and Cursor Register Operation

Note: The internal cursor flip-flop gets set to ON whenever a scan line corresponding to the begin cursor nibble is reached, and gets set to cursor OFF whenever a
scan line corresponding to the end cursor nibble is reached. The cursor attributes are inserted whenever the character position being displayed corresponds to the
one pointed to by the cursor address register. A similar situation applies for characters with the underline attribute selected. Therefore, care should be taken when
setting the ES/F register and setting the cursor and underline sizes. In particular the ES/F value should not be between the upper nibble and lower nibble values of
the underline size register or between the upper nibble and lower nibble values of the cursor size register. To use the cursor as a pointer without displaying it, set
the lower nibble of the cursor size register to a value less than CSHR and the upper nibble to a value greater than CSHR.

2.5.2 TIMING CHAIN LOAD VALUE EXAMPLE

It is desired to have a display field of 80 columns by 25 rows
with the last screen row being a status row. It has been
determined that 25 character width times will be necessary
to complete horizontal retrace and that Horizontal sync
should be positioned to start a full seven character times
after blanking and end twenty characters after blanking to
give us a total sync width of 13 character times. (See Figure
17 for example.)

Additionally, vertical retrace will take 23 scan line times to
complete with vertical sync starting three scan line times
after vertical blanking begins and occupying a total period of
11 scan lines.

It is desired to make the character cells 12 scan lines tall.
The cursor will be a block shape and occupy the bottom 11

scan lines in a cell. The underline attribute will actually be a
strike through dash occupying the 4th scan line from the top
in a cell.

Our line width is 80 displayed characters plus 25 for retrace
making HLR = 80 + 25 - 1 = 104. Blanking will start after
the 80th character so HBR = 80 - 1 = 79. To achieve
seven character times after horizontal blanking, HSBR =
87 + 2 = 89. To achieve twenty character times after
blanking HSER = 100 + 2 = 102 (note 102 - 89 = 13
total). Cell height is 12 lines so CSHR = 12 - 1 = 11.
Since there are 12 scan lines per cell or row, vertical retrace
will require 23/12 = 1 row and 11 scan lines. This makes
our total row count VLR = 25 + 1 - 1 = 25 and ES/F =
11 - 1 = 10. Thus, timing chain location 4 would be coded:
1011 1010. We will display 25 rows soVBR = 25 - 1 =
24. Vertical sync will start at the beginning of the fourth scan

:1-1; =---=~_-=--~HBR-HS-BR~HSER_HLR====I-=-~-I -I -II
.--.--i------------------; - - - -- - - -,

DISPLAY INFORMATION BLANKED

SRBR-I-+---<~
VSBR-l--=:!:::::;;!----------------------I

VSER- t==1 BLANKED

r--L

ESIF

FIGURE 17. Typical Video Screen Format Specification
TL/DD/5526-26

7-20

2.0 Functional Description (Continued)

line of the row after blanking begins so VSBR = 4 - 1 = 3.
It will run for 11 scan lines or specifically the 4, 5, 6, 7, 8, 9,
10, 11, 12, 1, 2 ending at the beginning of the 3rd so VSER
= 3 - 1 = 2. The status row will be after the 24th so
SRBR = 24 - 1 = 23. To specify the underline and cursor
sizes one must remember that the first scan line is num­
bered O. To get our 11 line block cursor we begin after the 0
line and end at the end of the 11 line making CSR = 0000
1011. The underline dash will be USR = 0011 0100. Note
that the CSHR determines the scan counter modulo and if a
scan compare register value (ES/F, VSBR, VSER, USR,
CSR) is never reached, the signal end or begin will never be
initiated.

2.6 ATTRIBUTES

Eight independent attributes may be inserted itno the video
dot stream to affect display characters on either an individu­
al or global basis. The eight attributes along with their con-

ATTRIBUTE LATCH BIT

ATTRIBUTE MEMORY BIT

'-----REVERSE VIDEO
'-------HALF INTENSITY

'--------BLINK
'---------DOUBLE HEIGHT

'----------DOUBLE WIDTH
'-----------UNDERLINE

'-----------------BLANK
'----------------GRAPHICS

TLIDD/5526-27

FIGURE 18. Attribute Bit Assignments

DOUB~~~I~~~_"" ___ ~

SCAN UNE
CLDCK

VIDED
DATA

BUNK FIELDI
CHAR VCR 0

trol word bit assignments are detailed in Figure 18. The
scope with which a particular set of attributes affects the
display depends upon whether attribute control is internal or
external as determined by bit 4 in the VCR.

Attributes are present if the corresponding bit is a ZERO
(low).

2.6.1 Internal Attribute Selection

In internal mode attribute control comes from one of two
internal attribute latches designated ALO and AL 1, either of
which is directly loadable from the CPU accumulator. The
choice of which of the two is used for a particular display
character is determined by bit 7 (MSB) in the display memo­
ry data byte with 0 = ALO and 1 = AL 1. (Characters are
represented in display memory as ASCII values occupying
the low 7 bits of each 8-bit byte thus leaving bit 7 free for
attribute control.)

2.6.2 External Attribute Selection
In external mode each display character has associated
with it, a dedicated attribute field in the form of a high 8-bit
extension to the regular display memory character byte. To
use this mode the system bus msut be configured for 16-bit
bidirectional operation (SCR bit 4 = 1) and external attri­
butes must be selected (VCR bit 4 = 1).

2.6.3 Attribute Processing

Each of the eight attributes may be independently enabled
thus yielding a number of possible combinations. The exact
processing involved is shown in Figure 19. Note that attri­
butes are always present. Whether any of them are active
depends upon the particular control bit being enabled in the
latch or memory.

UNDERUNE ATTRIB. 5

HALF INTENSITY ATTRIB. 1---•• INTENSIFO
CHAR BUNK ATTRIB. 2

TL/DD/5526-28

FIGURE 19. TMP Attribute Processing

7·21

z en
~ o
U1

,.

an o
~
(IJ
z

2.0 Functional Description (Continued)

2.6.4 Attribute Operation
Reverse Video: A character and its surrounding cell are reversed in video from what was selected for the rest of the screen.

Half Intensity: To use the half intensity function the shared INTENSITY /FO ClK pin (25) must be selected for INTENSITY
operation by setting SCR bit 6 low. In operation the half intensity pin will be low whenever a character for which
the attribute is active is being displayed. To perform the actual attenuation function external circuitry must be
connected between the INTEN and Video Output pins. In fact the signal may be used for another purpose such
as switching between two colors.

Blink: A character or the field around it blinks as selected by VCR bit o.
Double Height: A designated character is stretched out so that it will occupy a 2-row tall space. This attribute is implemented

by slowing down by half the scan line stepping to the internal character generator. To use this attribute the
desired double high character must be placed into the two display memory locations corresponding to the top
and bottom row positions. For both locations the double high attribute is set. In addition the Blank attribute for
the bottom character is also set to tell the controller it is the bottom half of a double high character. The double
high attribute has no effect on element graphics or on pixel graphics displays. If an external character genera­
tor is used special circuitry must be employed to implement double high characters.

Double Width: A designated character is stretched out so that it will occupy a 2-character cell wide space. This attribute is
implemented by slowing down by half the clock to the video dot shifter. To use this attribute the desired double
wide character must be placed in the left character position and the double wide attribute bit set. The following
character position (right) can have any character as it will be ignored.

Underline: If set this attribute causes the underline figure to be added to the video dot stream. Since the underline, like the
cursor, can be specified as to position and size in the character cell, the underline can be an overline, block,
strike through or anyone of a number of effects. The underline overwrites any dot where it overlaps the
character.

Blank/Double
High Bottom:

A character is inhibited from being displayed while still allowing it to be stored in the display memory. If this
attribute and the double height attribute are set for the same character, the normal blank function is disabled
for that character position and the character is displayed as the bottom half of a double height character.

Graphics: This attribute determines whether the video memory data byte as accessed by the display memory controller is
routed through the character generator or block graphics control logic. If routed through the block graphics
logic (attribute active) the effect on the video display will be as described in the Block Graphics section. Note
that because Block Graphics mode is selected as an attribute it may be mixed in with normal alphanumerics
characters. Also all other attributes with the exception of double height operate on the block graphics charac­
ters.

2.7 CHARACTER GENERATOR

The internal character generator holds 128 characters in a
7 x 11 matrix. The standard character sets are addressed
using 7-bit ASCII codes stored in the display memory. When
operating with fonts smaller than the maximum of 7 x 11,
zeroes are encoded into the unused bits. When putting out a
character the video controller always starts character gen­
eration on the second scan line of a row, leaving the first
scan line blank. Similarly, the first (left) column in a charac­
ter cell is blanked with character generation starting on the
second column. Therefore, the specified cell size must be
one greater in height and width than the display characters
(including descenders) otherwise they will be chopped off. If
the character cells are larger than the internal 7 x 11 matrix,
blank dots will be put out after exhausting the internal gen­
erator (See Figure 20 for example.)

ALWAYS ALWAYS
BLANKED BLANKED

ALWAYS_! •••••••• l! ...
BLANK •••••••• • 1 ••••••• · .. · · · · · .: · •...... ·1· · · · · · .

•••••••• • 1 ••••••• · · .: · •. . ·1·.· · · .•.
• •• • • •• 1 ••••••••• · .. · .:•. . ·1·.· •••. · · · .1. e · · · .: .•.......

I TL/DD/5526-29

FIGURE 20. Character Cell Format

7-22

2.7.1 External Character Generation

The chip may be used with an external character generator
by switching over to a pixel graphic display mode with modi­
fied address stepping as controlled by VCR bits 6, 7. In this
mode an external character generator supplies pixel data to
the chip as depicted in Figure 21. Character addressing
comes from the display memory and scan line stepping from
a 4-bit counter clocked by the Horizontal Sync. Scan line
synchronization is achieved by using the Scan Count Clear
signal coming out on RE11, pin 36. After the display of a row
it pulses low to initialize the scan line counter for the start of
a new row. In pixel mode both the character and any spac­
ing between characters must be encoded into the external
character generator. In addition, the chip will access and
use at most 8 bits of pixel data for each character cell. How­
ever, if the cell width is specified to be 9 or 10, the ninth and
tenth dots will repeat what was coded into the first. There­
fore, assuming at least one dot spacing between charac­
ters, external fonts can at most be seven dots wide.

No limitations apply to the height of a character as long as
the external generator can supply all of the scan lines as
specified by the CSHR. As in regular pixel mode the lSB
brought in is the first dot put out.

Since the eighth data bit is used for character generation it
cannot effectively be used for internal attribute latch selec­
tion although one of the latches will be selected every data
byte. Therefore, both internal attribute latches must be load­
ed with the same values. If external attribute operation is
specified the full 8-bit high order attribute field is available
for usage.

2.0 Functional Description (Continued)

J I
..L

RAM ALE 1
ADDRESS H SYNC

LATCH SBO-SB15". V SYNC

VD
DATA

NS405
ALE

.... ,. • • I
I WRITE BUFFER I V

DISPLAY ... + CHARACTER
RE11 ro- LATCH I--GENERATOR RAM

7 BITS RAM RAM
'IIIf,. ,.. 4 BITS RD WR

i T ~ .. I

4-8IT CLR EXT SCAN CNt

IC~ COUNTER
CLR

TL/DD/5526-30

2.8 BLOCK GRAPHICS

FIGURE 21. External Character Set Implementation

2.8.1 Graphics Partitioning

Block graphics is an alternative display mode to normal al·
phanumerics which is selected through attribute bit 7. Ex­
ample (Figure 22). It can operate on a character cell by
character cell basis (see Attributes) and words by rerouting
display memory bytes through the Block graphics logic in­
stead of the internal character generator.

CAN BE USED TO DRAW VERTICAL
AND HORIZONTAL UNES

0000 •••••
0000 •••••
0000 •••••
ClDDU •••••
OODDOODao
000000000
000000000
OODOOOOOO

0000 •••••
0000 •••••
OOClO •••••
0000 •••••
0000 •••••
LloOO •••••
DOCO •••••
DaDO •••••

ooooaoooo
0000.0000
000080000
0000.0000
0000.0000
000080000
• •••• 0000
000000000
000000000
Dooooaooo
aOOQDODOO
000000000
DaODoaCHlO

000080000
DDDO.COOC
0000.0000
0000.0000
0000.0000
0000.0000
DDOO.OOOO
0000.0000
0000.0000
OODo.ao 00
DOOO.OOOD
0000.0000

TL/DD/5526-31

FIGURE 22. Example Block Graphics Display Patterns

The Graphics Logic operates by partitioning the character
cell space into nine possible areas as shown in Figure 23
and then using the seven lower bits in the display data byte
to turn these areas on or off. In this way one can draw
contiguous lines or simple geometric figures while at the
same time displaying alphanumeric characters in other
cells.

The partitioning of the cell is controlled by two timing chain
registers which specify two Horizontal and two Vertical cut
off points to the graphics logic. Through these two registers
one can make the sections as large or as small as desired,
even eliminating sections entirely. Note that data bits 0 and
5 each control two sections as depicted in Figure 23.

7-23

LEFT CDLUMN-----'

MIDDLE COLUMN

RIGHT COLUMN

o -.-TOP ROW

4 -.-MIDDLE ROW

5 -'-BOTTOM ROW

TL/DD/5526-32

FIGURE 23. Block Graphics Cell Partitioning

The registers defining the graphics areas function as fol­
lows:

The Graphics Row Register - 8 bits (GRR) is divided into
the following two (2) registers:

• Graphics Middle Row, (GMR):
Defines the scan count at which the middle row begins
(4 most significant bits of GRR).

• Graphics Bottom Row, (GBR):
Defines the scan count at which the bottom row begins
(4 least significant bits of GRR).

See Figure 24.1a for row example.

z en
0I:loo
o
U1

•

&t)
o
"'II:t
U)
Z

2.0 Functional Description (Continued)

The Graphics Column Register - 8 bits (GCR) controls ver­
tical partitioning through bit patterns as follows: (See Figure
24.)

7 1 5 4

L L L R

L L L R

L L L R

L L L L

3 Z

R X

R R

R R

R R

1

X

X

R

R

0

X

X

X

R

_OCR

_I DOT FIELD WIDTH

_7 DOT FIELD WIDTH

_e DOT FIELD WIDTH

_9 DOT FIELD WIDTH

TLlDD/5526-33

FIGURE 24. Block Graphics Column Partitioning

6 5043 21

O! I
11 : +-TOP

2! I
31 : +-IIIOOLE

~! !
51 I +-BOTTOII
6 1 I
I I
L II

TL/DD/5526-44

GRR = 24
GCR = 60 (0110 OXXX)
cell size = 6 x 7

FIGURE 24.1a Block Graphics Example

For all bits in the Graphics Column Register, a one assigns
that bit position to the middle column. A zero in an L bit
position assigns that bit position to the left column. A zero in
an R bit position assigns that bit position to the right column.
There is always at least one middle dot although the left and
right sections may be eliminated entirely. For 10 dot wide
cells the 10th bit will repeat the 9th bit. An easy way to
determine the column partitioning is to fill the GCR with all
ones, thereby making it one large middle section. Then,
starting from the outermost Land R bit positions, put zeros
in until the left and right sections are the sizes needed.

2.9 PIXEL GRAPHICS

When bits 6 and 7 of the Video Control Register are both
set to 1, the character generator and block graphics circuits
are disabled. Video output directly reflects the contents of
the display memory byte on a pixel (dot) per bit basis with
data output LSB first. Example (Figure 25).

Nine bits at a time are accessed from each video memory
location with as many bits being used as defined in the char­
acter cell width specification. If a cell width of 10 is specified

RECEIVE BUFFER RI BUFFER FULL

SI RECEIVE SHIFTER

:::;C::I:lOCD::I=OC:Jr;:J ••• o:Jooo:Jo:J:Jo:JO:1nwo
::lOCO::lO []:;::; :J0>:l0 •••• 00000000 00 OO:J [] 01
CO:J:J 00 []:J 0000 ••••• 0 :JO:J O:JOOOO:lO :JO"
:JOOO:J:JODD:JDO ••••• ULJOOOQUOOO:JO:J •••
0000::1::100000 •••••• 0000000::1::10::10 ••••
~auIJCOCOOO ••••••• OOOOOOO:JOO:J •••••
o:J:Joocaoo ••••• OO.OOOO:JOODOO ••••• O
[] 000 DODO •••• lao 01000000 0 00 ••••• 00
0::10000 0 ••••• 000 0 100000::1 0 o ••••• u aD
000000 ••••• 0 :::10001000 00::10 ••••• 00::10
0000 :J ••••• 00 00001000::1 0:1 ••••• 000 00
OOCO ••••• OOOOOOO.OOOOO ••••• :JOOO:J.
0::10 ••••• 00000 •• 0 •• 000 ••••• 00000 ••
(10 •••• 100000 ••• 0 •• 00 •••• 100000 •••
:J ••••• oooao •••• o •••••••• oonClO ••••
••••• :JOOOO ••••• O ••••••• C;OOO:J •••••
•••• 00000 •••••• 00 ••••• 00000 ••••• 0
••• ocooc ••••••• CO •••• OCOOO ••••• OO
•• 00000 ••••• 00.0000000000 ••••• 000
.oc::lco ••••• oon.ooooooooo ••••• OOOO
00000 ••••• 0000.00000000 ••••• 00000
u:J:::lO ••••• OOOOO.OOOOOO::l ••••• OOO:::lO:J
OOO ••••• OOOOOO.OOOOOO ••••• OOOO::lOU
OO ••••• OOOOOOO.OOOOO ••••• OO:::lOO::lOO
O ••••• OOOOCOOO.OOOO ••••• ::IOOOOOO::lO
••••• 000000000.000 ••••• 0000::1000::10
•••• 0::1 ::100 0::1 0 0::1 •• 0 ••••• 000 0 0 000 oeo
••• :JOOOOOO:::lL:lOc ••••••• OOOUO::lUOCOOO
•• 0:JO::lOOOOOOOO •••••• 0000000000000
.0::1::1 00 C 0 00 000 0 ••••• 00 000 ooooon nnn
oonnOOClOOO:JUtlOo ••• ooooouooooooooo
LJU:JtJl)lItHlIJU'JUUUUU.OOOCOL:luuoooononc

TL/DD/5526-34

FIGURE 25. Example Pixel Graphics

the 10th bit will merely repeat the 9th bit. Attributes are still
operable in pixel mode, on a data byte basis, with internal
and external operation possible. With internal attribute latch
operation the same values must be loaded into both latches
since the usual latch select bit is now being used for pixel
control. Unless, however, only a 7 dot wide cell is used leav­
ing the 8th bit free. With external attribute operation we are
now limited to a 7-bit attribute field since pixel data can now
occupy 9 of the 16 bus bits. Because of this the LSB attri­
bute, Reverse Video is totally disabled from operation in
Pixel Graphic mode. This also applies to internal attribute
latch operation. Note, however, that reverse entire screen
video is still operable. Address sequencing through the vid­
eo memory is sequential with as many data bytes being read
in as is necessary to satisfy the pixel requirements of the
screen.

2.10 LIGHT PEN

Activation of the light pen interrupt causes the horizontal
and vertical screen position of the currently displayed char­
acter to be latched into the Horizontal Light Pen Register
HPEN (7 bits) and Vertical Light Pen Register VPEN (5 bits)
respectively. Both HPEN and VPEN may be read into the
CPU accumulator. The values latched remain in VPEN and
HPEN until another light pen interrupt latches new values.

2.11 UART

The UART features full duplex operation with double buff­
ered Receive and Transmit sections. Baud rate generation
is fully programmable through a 2-stage divider chain. CPU
control of the UART is extensive with polled or interrupt
driven operation possible.

UART CDNTRDL

UART STATUS

CRYSTAL I

SO TRANSMIT SHIFTER
(OUTPUT REGISTER)

TI SHIFTER EMPTY

TRANSMIT BUFFER TI BUFFER EMPTY

TL/DD/5526-35

FIGURE 26. TMP UART Block Diagram

7-24

2.0 Functional Description (Continued)

2.11.1 UART Control

UART Status Register (STAT): Contains error and status
bits which reflect the internal state of the UART. Read into
CPU accumulator. Bits 0, 5 are the same as those found in
the internal interrupt register.

1 7 I • I 5 I 4 I 3·1 2·11· I 0 1
L..-J

lliL1 .. UART RECEIVE BUFFER FULL L; -PARITY ERROR DETECTED

1 = FRAMING ERROR DETECTEO
'-----1 = OVERRUN ERROR OETECTED

'--------1 = TRANSMInER OUTPUT REGISTER EMPTY
(OUTPUT SHIneR)

'-------_1 = TRANSMInER BUFFER EMPTY

'---------ALWAYS ONES

TLlDD/5526-36

UART Status Register bits 1, 2, 3 are only cleared on a chip reset or a read
of the UART Receive Buffer. If another word were to come in before the
Receive Buffer could be read the errors associated with the new word would
add to those already present. The receipt of a new word can cause the three
bits to go from a 0 to a 1, but not from a 1 to a o.

FIGURE 27. UART Status Register

Note: The Transmit Output Register Empty flag is set to one whenever the
transmitter is idle. The flag is reset to zero when a data character is
transferred from the Transmit Buffer to the Output Register. This
transfer does not occur until the next rising edge of the internal UART
Transmit Clock. The Transmitter Output Register Empty flag occurs at
the beginning of the last stop bit.

UART Control Register (UCR): Contains control bits which
configure the format of transmitted data and tests made
upon received data. Written to from CPU accumulator.

171615·14131211101

I I I

lS
D = 7 BITS (EXCLUDING PARITY)
1 = 8 BITS (EXCLUDING PARITy)
o - 1 STOP BITTRANSMlmo
1 = 2 STOP BITS TRANSMITIED
(RECEIVER ALWAYS CHECKS FOR ONE STOP BIT)
o = PARITY DISABLED
1 = PARITY ENABLED
00 = DOD PARITY (IF PARITY

ENABLED)
01 = EVEN PARITY (IF PARITY

ENABLED)
10 = MARK (1) (IF PARITY ENABLED)
11 = SPACE (0) (IF PARITY ENABLED)

'-------- 0 = BREAK DISABLED (NORMAL
SERIAL OUTPUT)

1 = SERiAl OUTPUT FORCED LOW
(SPACE)

L-_______ 0 = NO LOOP BACK

1 .. SERiAl OUTPUT INTERNALLY
LOOPED BACK TO SERIAL INPUT.
OUTPUT STill ACTIVE. '----------0 .. TRANSMInER ENABLED

OBit 5 set to 0 by RESET.

1 '" TRANSMITIER DISABLED (DATA
IN TRANSMIT BUFFER NOT
TRANSFERRED TO TRANSMITIER
OUTPUT REGISTER)

TLlDD/5526-37

FIGURE 28. UART Control Register

UART TRANSMIT
CLOCK

UART RECEIVE
CLOCK

UART
MUI1IPlEX
REGISTER +16

2.11.2 Baud Clock Generation

The basic BAUD clock is derived from the crystal frequency
through a two-stage divider chain consisting of a 3.5-11
prescale and an 11-bit binary counter. (Figure 29). The di­
vide factors are specified through 2 write only registers
shown in Figure 30. Note that the 11-bit Baud Rate Divisior
spills over into the Prescale Select Register. The correspon­
dences between the 4-bit Prescale Select and Prescale fac­
tors is shown in Table I. There are many ways to calculate
the two divisor factors but one particularly effective method
would be to try to achieve a 1.8432 MHz frequency coming
out of the first stage then use the BAUD Rate Divisor factors
shown in Table II.

(4-- PRE SCALE REGISTER -1 4 BAUD REGISTER ----+t
I 3 I 2 \1 \ 0 \ X 110 \ 9 \ 81 716 \ 5 I 41 312 11 I 0 I
PRESCALE SELECT BAUD RATE DIVISOR

TL/DD/5526-39

FIGURE 30. UART BAUD Clock Divider Registers

TABLE I. Prescale Factors

Prescale
Select

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Prescale
Factor

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

TABLE II. Baud Rate Divisors (1.8432 MHz Input)

BAUD RATE
SELECT 11 BITS

110-19.200 BAUD

Baud
Rate

110 (110.03)
134.5 (134.58)
150
300
600

1200
1800
2400
3600
4800
7200
9600

19200

Baud Rate
Divisor (N - 1)

1046
855
767
383
191
95
63
47
31
23
15
11
5

TL/DD/5526-36

FIGURE 29. UART BAUD Clock Generation

7-25

z en
~
o
U1

fII

2.0 Functional Description (Continued)

The frequency coming out of the BAUD Rate Divisor is then
passed through the UART Multiplex Register. Through the
UART Multiplex Register one can specify that the Transmit­
ter or Receiver clock be the same or a power of two multiple
of the other.

UART Multiplex Register (UMX): Contains the bits which
determine the divisor which is used to count down from the
primary baud rate when different rates are used for send
and receive (eight bits).

1.DIVIDEIY1
1-DMDEIY2
1.DMDEIY4

'-----1 • DMDE IY.
L..----l • DMDE IY 1.

ONLY ONE fACTOR
MAY BE SELECTED
IIJ A TIME

L..-----'1 • DMDE IY 32
L.....-----UNUSED (0)

L.....------(O) DMDED RATE IS USED fOR SEND
(1) DMDED RATE IS USED fOR RECEIVE

TL/DD/5526-40

FIGURE 31. UART Multiplex Register

The actual baud rate may be found from:

BR = Fc/(16*N*P*D)

Where:
BR is the Baud Rate
Fc is the external crystal frequency

N is one plus the value of the Baud Rate Divisor contained
in the Baud Rate Select Register and the Prescale Select
Register.

P is the Prescale Divide Factor Selected by the value in the
Prescale Select Register.

o is the Multiplex Register Divide Factor

3.0 Slave Processing
The TMP may be used as a slave video controller by having
a host system perform Direct Memory Accesses into the
display RAM. To assist in implementing such a system the
chip features two DMA control pinS-HOLD (Hold Request)
and HLDA (Hold Acknowledge). These two signals come
out on shared ROM Expand Bus pins REB and RE12. To
request a DMA access a host would activate HOLD (active
high and await the acknowledging HLDA from the TMP be­
fore proceeding with the DMA. The TMP only allows DMA
operations during the vertical blanking period and will acti­
vate HLDA in response to a HOLD shortly after vertical
blanking starts. In DMA mode all 16 TMP System Bus driv­
ers are tri-stated while the bus control signals RAM ALE,
RAM RD, RAM WR go to their inactive (high)' states. A
HOLD request must arrive two CPU cycles before vertical
blanking starts; otherwise it will miss that retrace cycle and
will have to wait until the next one, one frame later. Once
DMA mode is entered, it is maintained for the duration of
vertical blanking regardless of the state of HOLD. Near the
end of vertical blanking the DMA mode will terminate in

7-26

preparation for the display of the next frame, but the HLDA
will NOT turn off. Specifically, this will occur one scan time
before the end of vertical blanking. It is up to the designer to
be sure that the host is off the BUS before this happens or
suffer bus contention with the video controller. He can do
this by either predetermining the length of time the host has
to remain on the bus, or by using the end of vertical sync (as
shown in Figure 32) to signal the end of a safe DMA period.
If during DMA the CPU attempts to do a display memory
access it would be put into a wait state until DMA is conclud­
ed and normal memory accessing is resumed.

Tl.tP

HLOA t-=:=3~S -+-:.t
ALE t=-2 1 --t--c>

~ 27

+sv

10kJ).

rmRt-:1.:.7 ____

HLO":

TL/OD/5526-45

Vertical sync should be programmed to end as late as pOSSible, but must
end at least one scan time before the end of vertical blanking.

FIGURE 32

4.0 Reset
The TMP will reset if the RESET (32) pin is held at a logic
low « O.BV) for at least five CPU cycle times. This pre-sup­
poses that the Vee is up, stable and within operational limits
(+ 5V ± 10%) and that the oscillator is running. For a power
on reset, time must be allowed for the power supplies to
stabilize (typically 50 ms) and the oscillator to start up. If
power supply noise or ripple causes Vee to exceed the
+ 5V ± 10% limits neither reset nor operation is guaran­
teed.

Internally, the RESET pin has a depletion load pullup that
typically acts as a 30 JlA current source from Vee in the
voltage range of interest. A typical reset circuit with a 0.5
second reset pulse is shown in Figure 33.

SWITCH
TMP

..L HIl

f_
o-~'\0-4 ... +...:32=f iiffiT

4~F~

TL/DD/5526-41

FIGURE 33. Typical Reset Circuit

4.0 Reset (Continued)

During RESET a number of internal registers are initialized as follows:

4.1 CPU

CPU Clock divide = 1.5 (SCR bit 0 = 1)
Shared VIDClK/FI ClK = 0 (SCR bit 7 = 0, FI ClK gated to external pin)
Program Counter = 0
Stack Pointer = 0
Program Memory Bank = 0
RAM Register Bank = 0
Timer Stopped
Instruction Register cleared
FO and F1 cleared

4.2 INTERRUPTS

Internal and External Interrupts disabled
Internal Interrupt Register set to 000011 XO

4.3 UART

Receiver initialized to look for start bit
Status Register set to 11110000
Transmitter initialized to wait for OUT XMTR instruction
Control Register bit 5 = 0 (No BREAK)

4.4 VIDEO

Video generation shutdown (VCR bit 5 = 0)
FIFO Cleared Out
Timing Chain Character Counter = O}

Timing Chain Scan Counter == __ O~ IN TEST MODE ONLY
Timing Chain Row Counter
Timing Chain Blink Counter

4.5 PIN STATES AT RESET

Pins 1-8 (SBO-7)

Pins 9-16 (SB8-15)

Pin 17 (VID ClK/FI ClK)

Pin 18 (RAM ALE)

Pin 19 (RAM WR)

Pin 20 (RAM RD)

Pin 21 (ALE)

Pin 22 (XT Al 2)

Pin 23 (XTAl 1)

Pin 24 (Gnd.)

Pin 25 (INTENS/FO ClK)

Pin 26 (VO)

Pin 27 (VS)

Pin 28 (HS)

Pin 29 (EA)

In TRI-STATE during reset and until either the CPU executes a MOVX instruction or bit 5 of
the VCR is set.

If bit 4 of the SCR is set, SB8-15 will behave like SBO-7. If bit 4 of the SCR is cleared, SB8-
15 will act as outputs (any of which may be either high or low). Note that bit 4 of the SCR may
be one or zero at power-up.

High during reset and until bit 5 of the VCR is set.

High during reset and until the CPU executes a MOVX instruction or bit 5 of the VCR is set.

High during reset and until the CPU executes a MOVX (of the output to display RAM variety)
instruction.

High during reset and until either the CPU executes a MOVX instruction or bit 5 of the VCR is
set.

Pulses continuously.

Crystal input or master clock input.

Crystal input.

May be either high or low during reset.

low (because of asserted blanking signals) from reset until bit 5 of the VCR is set.

In TRI-STATE mode upon RESET, enabled when bit 5 of the VCR is set.

low from reset until bit 5 of the VCR is set.

Input only. (must be tied HIGH (V1H2»

7-27

z
en
~
o
U1

4.0 Reset (Continued)

Pin 30 (PSEN) Active during reset.

Pin 31 (RD)

Pin 32 (RESED

Pin 33 (SO)

High during reset and until an IN PORT instruction is executed.

Input only.

Pin 34 (SI)

High during reset and until an OUT XMTR instruction is executed.

Input only.

Pin 35 (RE12/HlDA) If HOLD is low: low during reset. If HOLD is high: low at falling edge of ALE and during PSEN,
may be low or high at rising edge of ALE.

Pin 36 (RE11/SC ClR) If reset asserted: low at falling edge of ALE and during PSEN, sampled value of internal Scan
Count Clear signal is output at rising edge of ALE.

Pin 37 (RE10/INTR)
Pin 38 (RE9/lPEN)
Pin 39 (RE8/HlDR)

} If reset asserted: low at falling edge of ALE and during PSEN. Always in TRI-STATE at rising
edge of ALE.

Pins 40-47 (REO-7; 1/00-7) If reset asserted: low at falling edge of ALE, in TRI-STATE during PSEN, and may be either
high or low at the rising edge of ALE.

Pin 48 (Vee>

5.0 Extra Attributes
One may want to expand the external attribute field by add­
ing more bits so that functions such as color (Red­
Green-Blue drive) or grey scale may be implemented. Like
the eight attributes which the chip handles internally these
extra attributes would operate on a character cell basis. To
add attribute bits one would have to duplicate the internal 4
level character/attribute FIFO externally using fast MSI
chips. To assist in handling the external FIFO circuitry the
TMP features two FIFO clocking signals on pins 17 and 25.
The FIFO IN Clock (FI ClK) is used to strobe attribute data
into the external FIFO circuits in synchronism with the inter­
nal TMP FIFO. Its timing is identical to RAM RD but is only
active when the video does a display RAM read to load its
FIFO. The FIFO OUT Clock (FO ClK) pulses for 1-3 bit
times each time the video starts the display of a new char­
acter cell. The external FIFO would use the rising edge of
this signal to clock out or latch the attribute output.

+5V

In order for the TMP CPU to access the additional attribute
bits special bus gating arrangements would have to be
worked out on the System Bus (Video Data Bus is at most
16 bits wide). Unless one were to run with internal attributes
or only use a few of the external attributes in which case the
unused bits could be used with the external FIFO. Whenev­
er using the FO ClK the Intensity attribute is disabled since
they both share the same pin.

6.0 TMP BUS Interfacing
The two external buses on the TMP, ROM Expand and Sys­
tem are easily interfaced to as shown in Figures 34 and 35.
Important bus information output from the chip is latched
using the rising or falling edges of the various control sig­
nals. I/O port information is read in through a TRI-STATE®
buffer chip such as an 81 lS96.

HLOA, SCCLR, INTR, LP, HOLD

EA

AU~---1~--------------------------~
NS405

TLlDD/5526-42

FIGURE 34. TMP ROM Expand BUS

7-28

6.0 TMP BUS Interfacing (Continued)

08-015

~ I CHIP 'l1li
I I SELECT I DECODING

74LS373

.... A8-A15 I
..... S88-SB15 L _____

L VIDEO RAM
OR

110 PORTS

.... AO-A7 ~ I SBO-SB7

74lS373
.... I I

.III ~

00-07

FIGURE 35. TMP System Bus

TMP Registers (Excluding Timing Chain Registers)

..
,.

NS405

RAM ALE

..
,.

RAM RAM
RD WR

sl S
TL/DD/5526-43

TMP Registers Associated Intructlons

A
data
Rr
@Rr

*HACC

C

= Accumulator - 8 bits
= data immediate
= Register
= Register pointed to by RO or R1

= High Accumulator - 8 bits

= Carry Bit

*LONG RO = Register Pair, RO, RA

*LONG R1 = Register Pair R1, RB

T = Timer - 8 bits

FO =FlagO
F1 = Flag 1

INTR = Interrupt Register- 8 bits

CPU SECTION

ADDA,Rr
ADDA,#data
ADDA,@Rr
AD DC A, Rr
ADDC A, # data
ADDCA,@Rr
ANLA,Rr
ANLA,#data
ANLA,@Rr
CLRA
CPLA
DAA
DECA
DECRr
INCA
INCRr
INC@Rr

*MOVA,HACC

CLRC CPLC

*DECL RO
*MOVLRO,A

*DECL R1
*MOVLR1,A

MOVA,T
STRTT

CLRFO CPLFO
CLR F1 CPLF1

MOVA,INTR
*DIS II
ENXI

7-29

MOVA,Rr XCHA,Rr
MOVA,@Rr XCHA,@Rr
MOVA,#data XCHDA,@Rr
MOVRr,A XRLA,Rr
MOV Rr,#data XRLA,@Rr
MOV@Rr,A XRLA,#data
MOV @Rr,#data JBn addr
MOVPA,@A JNZ addr
MOVP3A,@A JZaddr
RLA DJNZ Rr,addr
RLCA
RRA
RRCA
ORLA,Rr
ORLA,@Rr
ORLA,#data
SWAP A

*MOVHACC,A

JNCaddr JC addr

*INCL RO *MOVLA,RO
*MOVXA,@RO *MOVX @RO,A

*INCL R1 *MOVLA,R1
*MOVXA,@R1 *MOVX@R1,A

MOVT,A STOPT
*JNTF addr JTF addr

JFO addr *JNFO addr
JF1 addr *JNF1 addr

JNXI addr JXI addr
DISXI *EN II

z en
~ o
(II

U) r---~
o
(1j TMP Registers (Excluding Timing Chain Registers) (Continued)
Z

TMP Registers

MASK

PSW

PORT

= Internal Interrupt MasK - 8 bits

= Program Status Word - 8 bits

= 8 bit 1/0 Port

CPU SECTION (Continued)

*MOV MASK,A

MOVA,PSW

ANL PORT,#data
ORL PORT,#data

Miscellaneous Instructions CALLaddr
NOP
SELMBO
*SEL MB3

VIDEO MANAGEMENT

SCR
VCR
HOME
CURS

BEGD
ENDD
SROW
ALO
AU
HPEN
VPEN
VINT

= System Control Register - 8 bits
= Video Control Register - 8 bits
= Home Address Register - 16 bits
= Cursor Address Register - 16 bits

= Beginning of Display RAM Register - 16 bits
= End of Display RAM Register - 16 bits
= Status Row Register - 16 bits
= Attribute Latch 0 - 8 bits
= Attribute Latch 1 - 8 bits
= Horizontal Light Pen Register - 7 bits
= Vertical Light Pen Register - 5 bits
= Vertical Interrupt Register - 5 bits

*DEC CURS
*MOVCURS,A

UART CONTROL

PSR
BAUD
UCR
UMX
STAT
RCVR
XMTR
TCP
@TCP

= Pre scale Register (UART) - 8 bits
= Baud Rate Select Register - 8 bits
= UART Control Register - 8 bits
= UART Multiplex Register - 8 bits
= Status Latch (UART) - 6 bits
= UART Receive Buffer - 8 bits
= UART Transmit Buffer - 8 bits
= Timing Chain Pointer
= Register Pointed to by TCP

·New instruction added to 8048 subset.

Symbol Definitions
Symbol Definition

AC Auxiliary Carry Flag

addr Program Memory Address

b Bit Designator (b = 0 - 7)

BS RAM Bank Switch

data Number or Expression (8 bits)

DBF Program Memory Bank Select Bits (2)

EXI External Interrupt Pin

FO,F1 Internal Flags

P 1/0 Port (8 bits)

Symbol

PC
SP

TF

@

()

« »
~

7-30

Associated Instructions

MOVPSW,A

IN PORT
OUT PORT

JMPaddr
RET
SEL MB1
SELRBO

Associated Instructions

*MOVSCR,A
*MOVVCR,A
*MOVA,HOME
*INCCURS
*MOVA,CURS

*MOVBEGD,A
*MOVENDD,A
*MOVSROW,A
*MOV ALO,A
*MOVAL1,A
*MOVA,HPEN
*MOVA,VPEN
*MOVVINT,A

*MOVPSR,A
*MOVBAUD,A
*MOVUCR,A
*MOVUMX,A
*MOVA,STAT
*IN RCVR
*OUTXMTR
*MOVTCP,A
*MOV@TCP,A

JMPP@A
RETR
*SEL MB2
SELRB1

*MOVHOME,A
*MOVX A,@CURS
*MOVX @CURS,A

Definition

Program Counter
Stack Pointer
Timer Flag

Prefix for Immediate Data
Prefix for Indirect Address

Contents of Register
Contents of Memory Location pointed to by
designated register

Replaced by

Instruction Set

Mnemonic Machine Code Function

ADDA, Ar 0 1 1 0 1 r r r (A) ~ (A) + (Ar) for
r= 0 - 7

ADDA, #data 0 0 0 0 0 0 1 1 (A) ~ (A) + data
d7 d6 d5 d4 d3 d2 d1 dO

ADDA, @ Ar 0 1 1 0 0 0 0 r (A) ~ (A) + «Ar)) for
r = 0 - 1

AD DC A, Ar 0 1 1 1 1 r r r (A) ~ (A) + (C) + (Ar)
for r = 0 - 7

ADDC A, # data 0 0 0 1 0 0 1 1 (A) ~ (A) + (C) + data
d7 d6 d5 d4 d3 d2 d1 dO

AD DC A, @Rr 0 1 1 1 0 0 0 r (A) ~(A) + (C) +
«Ar)) for r = 0 - 1

ANLA, Ar 0 1 0 1 1 r r r (A) ~ (A) AND (Ar) for
r = 0-7

ANLA, # data 0 1 0 1 0 0 1 1 (A) ~ (A) AND data
d7 d6 d5 d4 d3 d2 d1 dO

ANLA, @ Ar 0 1 0 1 0 0 0 r (A) ~ (A) AND ((Ar))
forr = 0 - 1

ANL POAT, # data 0 1 1 1 0 0 1 1 (P) ~ (P) AND data
d7 d6 d5 d4 d3 d2 d1 dO

CALL addr a10 a9 a8 1 0 1 0 o «SP)) ~ (PCO-12)
a7 a6 a5 a4 a3 a2 a1 aO ((SP)) ~ (PSW3-7)

(SP) ~ (SP) + 1
(PC8-1 0) ~ addr 8-1 0
(PCO-7) ~ addr 0-7
(PC11-12 ~ DBFO,1

7-31

Description

Add contents of
designated register
to the Accumulator
(8-bit operation)

Add immediate the
specified data to the
Accumulator (8-bit
operation)

Add indirect the
contents of data
memory pointed to
by Arto the
Accumulator (8-bit
operation)

Add with carry the
contents of the
designated register
to the Accumulator
(8-bit operation)

Add immediate with
carry the specified
data to the
Accumulator (8-bit
operation)

Add indirect with
carry the contents of
data memory pointed
to by Ar to the
Accumulator (8-bit
operation)

Logical AND
contents of
designated register
with Accumulator (8-
bit operation)

Logical AND
specified Immediate
Data with
Accumulator (8-bit
operation)

Logical AND indirect
the contents of data
memory pointed to
by Arwith
Accumulator (8-bit
operation)

Logical AND
immediate specified
data with output port
(8-bit operation)

Call designated
subroutine

Cycles Bytes

1 1

2 2

1 1

1 1

2 2

1 1

1 1

2 2

1 1

2 2

2 2

C AC

· ·
· ·

· ·

· ·

· ·

· ·

Flags

HACC

·

·

·

·

·

·

FO F1

z en
~
Q
U1

Instruction Set (Continued)

Mnemonic Machine Code Function Description Cycles Bytes
Flags

C AC HACC FO F1

CLRA 0 0 1 0 0 1 1 1 (A) ~o Clear the 1 1
Accumulator

CLRC 1 0 0 1 0 1 1 1 (C) ~O Clear carry bit 1 1 *
CLRFO 1 0 0 0 0 1 0 1 (Fa) ~o Clear Flag 0 1 1 *
CLR F1 1 0 1 0 0 1 0 1 (F1) ~a Clear Flag 1 1 1 *
CPLA 0 a 1 1 a 1 1 1 (A) ~NOT(A) Complement the 1 1

contents of the
Accumulator (8-bit
operation)

CPLC 1 0 1 a a 1 1 1 (C) ~ NOT (C) Complement carry 1 1 *
bit

CPLFa 1 a 0 1 a 1 a 1 (Fa) ~ NOT (Fa) Complement Flag a 1 1 .
CPLF1 1 a 1 1 0 1 a 1 (F1) ~ NOT (F1) Complement Flag 1 1 1 .
DAA 0 1 a 1 a 1 1 1 Decimal Adjust the 1 1 · *

contents of the
Accumulator (8-bit
operation)

DECA 0 a 0 a a 1 1 1 (HACC, A) ~ (HACC, Decrement by 1 the 1 1 · .
A) -1 contents of HACCI

ACC

DEC CURS 0 a a a 1 0 1 a (CURS) ~ (CURS) - 1 Decrement by 1 the 1 1
contents of the
Cursor Address
Register

DECRr 1 1 a a 1 r r r (Rr) ~ (Rr) - 1 Decrement by 1 the 1 1 · contents of the
designated register
(8-bit operation)

DECL Rr a 0 a a 1 a a r (Rr) ~ (Rr) - 1 for Decrement by 1 the 1 1
r = a - 1 contents of the

designated 16-bit
register pair

DIS II a 0 1 1 a 1 a 1 Disable internal 1 1
interrupts

DISXI a 0 a 1 a 1 a 1 Disable external 1 1
interrupts

DJNZ Rr, addr 1 1 1 0 1 r r r (Rr) ~ (Rr) - 1 for Decrement the 2 2
a7 a6 a5 a4 a3 a2 a1 aa r = a - 7 specified register

If (Rr) =1= a do (PCO-7) and Jump if not zero
~addr to designated
If (Rr) = 0 do (PC) address within page
~PC+2 (a-bit decrement)

ENII a a 1 0 a 1 a 1 Enable internal 1 1
interrupts.

ENXI a a a a a 1 a 1 Enable external 1 1
interrupt.

INCA a a a 1 0 1 1 1 (HACC, A) ~ (HACC, Increment by 1 the 1 1 * .
A) + 1 contents of HACCI A.

INCCURS a a 1 1 1 a 1 0 (CURS) ~ (CURS) + 1 Increment by 1 the 1 1
contents of the
Cursor Address
Register.

7-32

I nstruction Set (Continued)

Mnemonic Machine Code

INCRr 0 0 0 1 1 r r r

INC@ Rr 0 0 0 1 0 0 0 r

INCL Rr 0 0 1 1 1 0 0 r

IN PORT 1 1 1 0 0 0 0 1

IN RCVR 1 1 1 0 0 0 0 0

JBb addr b2 b1 bO 1 0 0 1 0
a7 a6 a5 a4 a3 a2 a1 aO

JCaddr 1 1 1 1 0 1 1 0
a7 a6 a5 a4 a3 a2 a1 aO

JFO addr 1 0 0 1 0 1 1 0
a7 a6 a5 a4 a3 a2 a1 aO

JF1 addr 0 1 1 1 0 1 1 0
a7 a6 a5 a4 a3 a2 a1 aO

JMP addr a10 a9 a8 0 0 1 0 0
a7 a6 a5 a4 a3 a2 a1 aO

JMPP @ A 1 0 1 0 0 0 1 1

JNCaddr 1 1 1 0 0 1 1 0
a7 a6 a5 a4 a3 a2 a1 aO

Function Description

(Rr) ~ (Rr) + 1 for Increment by 1 the
r=0-7 contents of the

designated register
(8-bit increment)

((Rr» ~ ((Rr» + 1 for Increment in direct
r = 0 - 1 the contents of data

memory pointed to
by Rr (8-bit
increment)

(Rr) ~ (Rr) + 1 for Increment by 1 the
r=0-1 contents of the

designated 16-bit
register pair

(A) ~(P) Input data from port
into Accumulator
(8-bit transfer)

(A) ~(RCVR) Input contents of
UART Receive buffer
into Accumulator (8-
bit transfer). Also,
clears Receive
Buffer Full interrupt.

(PCO-7) ~ addr if Jump to specified
(b) = 1 address within page
(PC) ~ (PC) + 2 if if Accumulator bit is
(b) = 0 for b = 0 - 7 set

(PCO-7) ~ addr if Jump to specified
C=1 address within page
(PC) ~ (PC) + 2 if if Carry flag is set
C=O

(PCO-7) ~ addr if Jump to specified
FO = 1 address within page
(PC) ~ (PC) + 2 if if Flag FO is set
FO = 0

(PCO-7) ~ addr if Jump to specified
F1 = 1 address within page
(PC) ~ (PC) + 2 if if Flag F1 is set
F1 = 0

(PC8-1 0) ~ addr 8-10 Direct Jump to
(PCO-7) ~ addrO-7 specified address
(PC11-12) ~ DBFO, 1 within 2k Bank

(PCO-7) ~ ((A» Jump indirect within
page to the address
specified in the
memory location
pointed to by the
Accumulator

(PCO-7) ~ addr Jump within page to
ifC = 0 specified address if
(PC) ~ (PC) + 2 Carry flag is 0
ifC = 1

7-33

Cycles Bytes

1 1

1 1

1 1

2 1

1 1

2 2

2 2

2 2

2 2

2 2

2 1

2 2

Flags

C AC HACC .
.

FO F1

z
C/)
.c:a.
o
C1I

•

II)
o
~
U)
z

Instruction Set (Continued)

Mnemonic Machine Code

JNFO addr 1 0 0 0 0 1 1
a7 a6 a5 a4 a3 a2 a1

JNF1 addr 0 1 1 0 0 1 1
a7 a6 a5 a4 a3 a2 a1

JNTF addr 0 0 0 0 0 1 1
a7 a6 a5 a4 a3 a2 a1

JNXI addr 1 0 1 0 0 1 1
a7 a6 a5 a4 a3 a2 a1

JNZ addr 1 1 0 1 0 1 1
a7 a6 a5 a4 a3 a2 a1

JTF addr 0 0 0 1 0 1 1
a7 a6 a5 a4 a3 a2 a1

JXI addr 1 0 1 1 0 1 1
a7 a6 a5 a4 a3 a2 a1

JZ addr 1 1 0 0 0 1 1
a7 a6 a5 a4 a3 a2 a1

MOVA,CURS 1 0 0 1 1 0 1

MOVA, HACC 1 1 1 0 0 0 1

MOVA,HOME 1 0 0 1 1 0 1

MOVA,HPEN 0 0 1 1 1 1 1

0
aO

0
aO

0
aO

0
aO

0
aO

0
aO

0
aO

0
aO

1

0

0

1

Function Description Cycles Bytes
Flags

C AC HACC FO F1

(PCO-7) ~ addr if Jump within page to 2 2
FO = 0 specified address if

(PC) ~ (PC) + 2 if FOisO

FO = 1

(PCO-7) ~ addr if Jump within page to 2 2
F1 = 0 specified address if

(PC) ~ (PC) + 2 if F1 isO

F1 = 1

(PCO-7) ~ addr if Jump within page to 2 2
TF = 0 specified address if

(PC) ~ (PC) + 2 if Timer flag is reset. If

TF = 1, (TF) ~ 0 not, continue and
resetTF

(PCO-7) ~ addr if Jump within page to 2 2
EXI = LOW specified address if

(PC) ~ (PC) + 2 if External Interrupt pin

EXI = HIGH is LOW

(PCO-7) ~ addr if Jump within page to 2 2
A =1= 0 specified address if

(PC) ~ (PC) + 2 if Accumulator is not 0

A=O

(PCO-7) ~ addr if Jump within page to 2 2
TF = 1, (TF) ~ 0 specified address if

(PC) ~ (PC) + 2 if Timer flag is set. If

TF = 0 jump taken Timer
flag reset

(PCO-7) ~ addr if Jump within page to 2 2
EXI = HIGH specified address if

(PC) ~ (PC) + 2 if External Interrupt pin

EXI = LOW isHIGH

(PCO-7) ~ addr if Jump within page to 2 2
A=O specified address if

(PC) ~ (PC) + 2 if Accumulator is 0

A =1= 0

(HACCI A) ~ (CURS) Copy the contents of 1 1 *
the Cursor Address
Register into the
HACCI A (16-bit
transfer)

(A) ~(HACC) Copy contents of the 1 1
High Accumulator
into the Low
Accumulator (B-bit
transfer)

(HACCI A) ~ (HOME) Copy the contents of 1 1 *
the Home Address
register into the
HACCI A (16-bit
transfer)

(AO-6) ~ (HPEN) Copy the contents of 1 1
(A7) ~O the Horizontal Light

Pen Register into the
Accumulator (7 -bit
transfer, A7 cleared)

7-34

Instruction Set (Continued)

Mnemonic Machine Code Function

MOVA,INTR 1 0 a 0 1 1 0 0 (A) +- (INTR)

MOVA, PSW 1 1 a 0 0 1 1 1 (A) +- (PSW)

MOVA, Rr 1 1 1 1 1 r r r (A) +-(Rr)
forr = a - 7

MOVA,STAT 1 0 0 1 1 1 0 o (AO-5) +- (STAT)
(A6-7) +- 11

MOVA, T 0 1 0 a a 0 1 o (A) +- (T)

MOVA, VPEN 0 0 1 1 1 1 1 0 (AO-4) +- (VPEN)
(A5-7) +-0

MOVA, @Rr 1 1 1 1 0 0 0 r (A) +- ((Rr)) for
r = 0 - 1

MOVA, # data 0 0 1 0 0 0 1 1 (A) +- data
d7 d6 d5 d4 d3 d2 d1 dO

MOVALO,A 0 0 1 1 1 1 0 o (ALO) +- (A)

MOVAL1,A 0 0 1 1 1 1 0 1 (AL 1) +- (A)

MOV BAUD, A a 0 0 0 0 0 1 o (BAUD) +- (A)

MOVBEGD,A a 0 0 0 1 1 0 1 (BEGD) +- (HACCI A)

7-35

Description

Copy the contents of
the Interrupt Register
into the Accumulator
(a-bit transfer)

Copy contents of the
Program Status word
into the Accumulator
(a-bit transfer)

Copy the contents of
the designated
Register into the
Accumulator (a-bit
transfer)

Copy the contents of
the UART Status Latch
into the Accumulator
(6-bit transfer, A6 and
A7 set)

Copy the contents of
the Timer into the
Accumulator (a-bit
transfer)

Copy contents of the
Vertical Light Pen
Register into the
Accumulator (5-bit
transfer, A5-A7
cleared)

Copy indirect the
contents of data
memory pointed to by
Rr into the
Accumulator (a-bit
transfer)

Load immediate the
specified data into the
Accumulator (a-bit
load)

Copy the contents of
the Accumulator into
Attribute Latch 0 (a-bit
transfer)

Copy the contents of
the Accumulator into
Attribute Latch 1 (a-bit
transfer)

Copy the contents of
the Accumulator into
the UART Baud Rate
Select Register (a-bit
transfer)

Copy the contents of
HACCI A into the
Beginning of Display
RAM Register (16-bit
transfer)

Cycles Bytes

1 1

1 1

1 1

1 1

1 1

1 1

2 2

1 1

1 1

1 1

1 1

Flags

C AC HACC Fa F1

z
en
~ o
U1

• I

Instruction Set (Continued)

Mnemonic Machine Code Function Description Cycles Bytes Flags

C AC HACC FOF1

MOVCURS, A 1 0 0 0 1 0 1 1 (CURS) ~ (HACCI A) Copy the contents of 1 1
HACCI A into the
Cursor Address
Register (16-bit
transfer)

MOVENDD,A 0 0 0 0 1 1 0 o (ENDD) ~ (HACCI A) Copy the contents of 1 1
HACCI A into the End
of Display RAM
Register (16-bit
transfer)

MOVHACC,A 1 1 0 0 0 0 1 o (HACC) ~ (A) Copy the contents of 1 1 .
the Low Accumulator
into the High
Accumulator (8-bit
transfer)

MOVHOME,A 1 0 0 0 1 0 1 o (HOME) ~ (HACCI A) Copy the contents of 1 1
HACCI A into the
Home Address
Register (16-bit
transfer)

MOVMASK,A 1 0 0 0 0 0 1 o (MASK) ~ (A) Copy the contents of 1 1
the Accumulator into
the Interrupt Mask
Register (8-bit transfer)

MOVPSR,A 0 0 1 0 0 0 1 o (PSR) ~(A) Copy the contents of 1 1
the Accumulator into
the UART Prescale
Register (8-bit transfer)

MOVPSW,A 1 1 0 1 0 1 1 1 (PSW) ~(A) Copy contents of the 1 1 . .
Accumulator into the
Program Status Word
(8-bit transfer)

MOVRr,A 1 0 1 0 1 r r r (Rr) ~ (A) for Copy contents of the 1 1
r = 0 - 7 Accumulator into the

designated register (8-
bit transfer)

MOVSCR,A 0 1 0 1 0 1 0 1 (SCR) ~(A) Copy contents of the 1 1
Accumulator into the
System Control
Register (8-bit transfer)

MOVSROW,A 0 0 0 0 1 1 1 o (SROW) ~ (HACCI A) Copy the contents of 1 1
HACCI A into the
Status Row Register
(16-bit transfer)

MOVT,A 0 1 1 0 0 0 1 o (T) ~(A) Copy the contents of 1 1
the Accumulator into
the Timer (8-bit
transfer)

MOVTCP,A 1 0 0 0 0 1 1 1 (TCP) ~ (A) Copy the contents of 1 1
the Accumulator into
the Timing Chain
Pointer

7-36

Instruction Set (Continued)

Mnemonic Machine Code Function

MOVUCR,A 0 0 0 0 0 0 0 1 (UCR) ~(A)

MOVVCR,A 0 1 0 0 0 1 0 1 (VCR) ~(A)

MOVVINT,A 1 0 1 0 0 0 1 o (VIND ~(A)

MOV Rr, # data 1 0 1 1 1 r r r (Rr) ~ data for
d7 d6 d5 d4 d3 d2 d1 dO r = 0-7

MOV@Rr,A 1 0 1 0 0 0 0 r ((Rr» ~ (A) for
r = 0 - 1

MOV @ Rr, # data 1 0 1 1 0 0 0 r «Rr» ~ data for
d7 d6 d5 d4 d3 d2 d1 dO r = 0 - 1

MOV@TCP,A 1 0 1 1 0 1 1 1 ((TCP» ~ (A)
(TCP) ~ (TCP) + 1

MOVUMX,A 0 0 1 1 0 0 1 1 (UMX) ~(A)

MOVLA, RO 1 0 0 1 1 0 0 o (HACCI A) ~ (RA, RO)

MOVLA, R1 1 0 0 1 1 0 0 1 (HACC/A) ~ (RB, R1)

MOVLRO,A 1 0 0 0 1 0 0 o (RA, RO) ~ (HACCI A)

MOVL R1, A 1 0 0 0 1 0 0 1 (RB, R1) ~ (HACC/A)

7-37

Description

Copy the contents of
the Accumulator into
the UART Control
Register (8-bit transfer)

Copy the contents of
the Accumulator into
the Video Control
Register (8-bit transfer)

Copy the contents of
the Accumulator into
the Vertical Interrupt
Register

Load immediate the
specified data into the
designated register (8-
bit load)

Copy indirect the
contents of the
Accumulator into the
data memory location
pointed to by Rr (8-bit
transfer)

Load indirect the
specified immediate
data into the data
memory location
pointed to by Rr (8-bit
load)

Copy indirect the
contents of the
Accumulator into the
Timing Chain Register
pointed to by TCP.
Contents of TCP
incremented by 1

Copy the contents of
the Accumulator into
the UART Multiplex
Register (8-bit transfer)

Copy the contents of
RA, RO into HACCI A
(16-bit transfer)

Copy the contents of
RB, R1 into HACC/A
(16-bit transfer)

Copy the contents of
HACCI A into RA, RO
(16-bit transfer)

Copy the contents of
HACCI A into RB, R1
(16-bit transfer)

Cycles Bytes

1 1

1 1

1 1

2 2

1 1

2 2

1 1

1 1

1 1

1 1

1 1

1 1

Flags

C AC HACC

.
*

FO F1

z en
oC:Ia o en

Lt)
o
~
tJ)
z

Instruction Set (Continued)

Mnemonic Machine Code

MOVPA,@A 1 0 1 1 0 0

MOVP3A,@A 1 1 1 1 0 0

MOVX A, @ CURS 1 0 0 1 1 1

MOVXA,@RO 1 0 0 1 0 0

MOVXA,@R1 1 0 0 1 0 0

MOVX @ CURS, A 1 0 0 0 1 1

MOVX@RO,A 1 0 0 0 0 0

1

1

0

0

0

0

0

Function Description Cycles Bytes
Flags

C AC HACC FO F1

1 (PCO-7) ~ (A) Replace low 8 bits of 2 1
(A) ~«PC» PC with A. Load
(pCO-7) ~ (old PCO-7) indirect within page the
+ 1 contents of the

memory location
pointed to by new PC
into Accumulator.
Restore PC with old
value plus 1. Operates
in all memory banks.

1 (PCO-7) ~ (A) Replace low 8 bits of 2 1
(PC8-10) ~ 011 PC with A. Next 3 bits
(A) ~ «PC» replaced with 011.
(PC) ~ (old PC) + 1 Load indirect within

page 3 the contents of
the memory location
pointed to by new PC
into the Accumulator.
Restore PC with old
value plus 1. Operates
in all memory banks.

1 (HACCI A) ~ ((CURS)) Copy indirect the Min. 2 1 · contents of display
memory as pointed to
by CURS into HACCI A
(16-bit transfer)

o (HACCI A) ~ ((RA, RO)) Copy indirect the Min.2 1 · contents of display
memory as pointed to
by RA, RO into HACCI
A (16-bit transfer)

1 (HACC/A) ~ «RB, R1» Copy indirect the Min. 2 1 · contents of display
memory as pointed to
by RB, R1 into HACCI
A (16-bit transfer)

1 ((CURS» ~ (HACCI A) Copy indirect the Min. 2 1
contents of HACCI A
into the display
memory location as
pointed to by CURS
(16-bit transfer)

o «RA, RO» ~ (HACCI A) Copy indirect the Min.2 1
contents of HACCI A
into the display
memory location as
pointed to by RA, RO
(16-bit transfer)

7-38

Instruction Set (Continued)

Mnemonic Machine Code Function

MOVX@R1,A 1 0 0 0 0 0 0 1 «RB, R1» ~ (HACC/A)

NOP 0 0 0 0 0 0 0 0

ORLA, Rr 0 1 0 0 1 r r r (A) ~ (A) OR (Rr) for
r=O-7

ORLA, @ Rr 0 1 0 0 0 0 0 r (A) ~ (A) OR ((Rr))
for r = 0 - 1

ORLA, # data 0 1 0 0 0 0 1 1 (A) ~ (A) OR data
d7 d6 d5 d4 d3 d2 d1 dO

ORL PORT, # data 0 1 1 0 0 0 1 1 (P) ~ (P) OR data
d7 d6 d5 d4 d3 d2 d1 dO

OUT PORT 1 1 0 0 0 0 0 1 (P) ~(A)

OUTXMTR 1 1 0 0 0 0 0 o (XMTR) ~ (A)

RET 1 0 0 0 0 0 1 1 (SP) ~ (SP) - 1
(PCO-12) ~ «SP»

RETR 1 0 0 1 0 0 1 1 (SP) ~ (SP) - 1
(PCO-12) ~ «SP»
(PSW 3-7) ~ «SP»

RLA 1 1 1 0 0 1 1 1 (An + 1) ~ (An)
forn = 0 - 6
(AO) ~(A7)

RLCA 1 1 1 1 0 1 1 1 (An + 1) ~ (An) for
n=O-6
(AO) ~ (C)
(C) ~(A7)

7-39

Description

Copy indirect the
contents of HACC/ A
into the display
memory location
pointed to by RB, R1
(16-bit transfer)

No Operation

Logical OR contents of
designated register
with Accumulator (a-bit
transfer)

Logical OR indirect the
contents of the data
memory location
pointed to by Rr with
Accumulator (a-bit
operation)

Logical OR the
specified immediate
data with the
Accumulator (a-bit
operation)

Logical OR immediate
specified data with
output port

Output the contents of
the Accumulator to the
I/O Port (8-bit transfer)

Copy the contents of
the Accumulator into
the UART Transmit
Buffer (a-bit transfer).
Also clears Transmit
Buffer empty interrupt

Return from subroutine
without restoring
Program Status Word
bits 5-7

Return from
Subroutine restoring
Program Status Word
(use for all returns from
interrupts)

Rotate Accumulator
left by 1 bit without
carry

Rotate Accumulator
left by 1 bit through
carry

Cycles Bytes

Min.2 1

1 1

1 1

1 1

2 2

2 2

2 1

1 1

2 1

2 1

1 1

1 1

Flags

C AC HACC

. .

.

FO F1

z en
~
Q
U1

III

Instruction Set (Continued)

Mnemonic Machine Code Function Description Cycles Bytes
Flags

C AC HACC FO F1

RRA 0 1 1 1 0 1 1 1 (An) ~ An + 1 Rotate Accumulator 1 1
forn = 0 - 6 right by 1 bit without

carry

RRCA 0 1 1 0 0 1 1 1 (An) ~ An+ 1 Rotate Accumulator 1 1 .
forn = 0-6 right by 1 bit through
(A7) ~(C) carry
(C) ~(AO)

SELMBO 1 1 0 0 0 1 0 1 (DBF) ~OO Select Bank 0 1 1
(0-2047) of Program
Memory

SELMB1 1 1 0 1 0 1 0 1 (DBF) ~ 01 Select Bank 1 1 1
(2048-4095) of
Program Memory

SELMB2 1 1 1 0 0 1 0 1 (DBF) ~ 10 Select Bank 2 1 1
(4096-6143) of
Program Memory

SELMB3 1 1 1 1 0 1 0 1 (DBF) ~ 11 Select Bank 3 1 1
(6144-8191) of
Program Memory

SELRBn 1 1 n 0 0 0 1 1 (BS) ~n Select Data RAM Bank 1 1
for n = 0 - 1 (0-7) or 1 (24-31)

STOPT 0 1 1 0 0 1 0 1 Stop Timer 1 1

STRTT 0 1 1 1 0 1 0 1 Start Timer 1 1

SWAP A 0 1 0 0 0 1 1 1 (A4-A7) ~ (AO-A3) SWAP 4 bit nibbles in 1 1
Accumulator

XCHA, Rr 0 0 1 0 1 r r r (A) ~ (Rr) Exchange the 1 1
for r = 0 - 7 Accumulator and

contents of designated
register (8-bit transfer)

XCHA,@Rr 0 0 1 0 0 0 0 r (A) ~ «Rr» Exchange indirect the 1 1
for r = 0 - 1 contents of the

Accumulator and the
data memory location
pOinted to by Rr (8-bit
transfer)

XCHDA, @ Rr 0 0 1 1 0 0 0 r (AO-3) ~ «Rr»0-3 Exchange indirect the 1 1
for r = 0 - 1 low 4 bits of the

Accumulator and the
data memory location
pOinted to by Rr (4-bit
transfer)

XRLA, Rr 1 1 0 1 1 r r r (A) ~ (A) XOR (Rr) Logical XOR contents 1 1
for r = 0 - 7 of designated register

with Accumulator (8-bit
transfer)

XRLA, @ Rr 1 1 0 1 0 0 0 r (A) ~ (A) XOR ((Rr)) Logical XOR indirect 1 1
forr = 0 - 1 the contents of the

data memory location
pointed to by Rr with
the Accumulator

XRLA, # data 1 1 0 1 0 0 1 1 (A) ~ (A) XOR data Logical XOR the 2 2
d7 d6 d5 d4 d3 d2 d1 dO immediate specified

data with the
Accumulator

7-40

TMP Opcode Chart

o

2

3

4

5

6
M
S
N

7

8

9

A

B

c

D

E

F

o

NOP

INC
@RO

XCH
A,

@RO

XCHD
A,

@RO

ORL
A,

@RO

ANL
A,

@RO

ADD
A,

@RO

ADDC
A,

@RO

MOVX
@RO,

A

MOVX
A,

@RO

MOV
@RO,

A

MOV
@RO,
#data

OUT
XMTR

XRL
A,

@RO

IN
RCVR

MOV
A,

@RO

MOV
UCR,

A

INC
@R1

XCH
A,

@R1

XCHD
A,

@R1

ORL
A,

@R1

ANL
A,

@R1

ADD
A,

@R1

ADDC
A,

@R1

MOVX
@R1,

A

MOVX
A,

@R1

MOV
@R1,

A

MOV
@R1,
data

OUT
PORT

XRL
A,

@R1

IN
PORT

MOV
A,

@R1

2 3

MOV ADD
BAUD, A,

A #data

AD DC
JBO A,

data

MOV MOV
PSR, A,

A # data

MOV
JB1 UMX,

A

MOV ORL

A,T A,
#data

ANL
JB2 A,

data

MOV ORL

T,A
PORT,
#data

ANL
JB3 PORT,

data

MOV
MASK, RET

A

JB4 RETR

MOV JMPP
VINT, @A

A

MOVP
JB5 A,

@A

MOV SEL
HACC, RBO

A

XRL
JB6 A,

#data

MOV SEL
A, RB1

HACC

MOVP3
JB7 A,

@A

LSN
4 5 6 7 8

JMP EN DECL
(page XI JNTF DECA RO

0)

CALL DIS INC
(page XI JTF INCA RO

0)

JMP EN XCH
(page

II
CLRA A,

1) RO

CALL DIS INCL
(page

II
CPLA RO 1)

JMP MOV
SWAP

ORL
(page VCR,

A
A,

2) A RO

CALL MOV ANL
(page SCR, DAA A,

2) A RO

JMP STOP ADD
(page T JNF1 RRCA A,

3) RO

CALL STRT ADDC
(page

T JF1 RRA A,
3) RO

JMP CLR MOV MOVL
(page

FO JNFO TCP, RO,
4) A A

CALL CPL MOVL
(page FO JFO CLRC A,

4) R2

JMP CLR
MOV

(page
F1 JNXI CPLC RO,

5) A

CALL CPL MOV MOV
(page F1 JXI @TCP, RO,

5) A # data

JMP SEL MOV DEC
(page MBO JZ A, RO 6) PSW

CALL SEL MOV XRL
(page MB1 JNZ PSW, A,

6) A RO

JMP SEL DJNZ
(page MB2 JNC RLA RO

7)

CALL SEL
MOV

(page
MB3 JC RLCA A,

7) RO

7-41

9 A B c

DECL DEC
MOV

R1 CURS
ENDD,

A

INC INC INC INC
R1 R2 R3 R4

XCH XCH XCH XCH
A, A, A, A,
R1 R2 R3 R4

INCL INC
MOV

R1 CURS
ALO,

A

ORL ORL ORL ORL
A, A, A, A,
R1 R2 R3 R4

ANL ANL ANL ANL
A, A, A, A,
R1 R2 R3 R4

ADD ADD ADD ADD
A, A, A, A,
R1 R2 R3 R4

ADDC ADDC ADDC ADDC
A, A, A, A,
R1 R2 R3 R4

MOVL MOV MOV MOV
R1, HOME, CURS, A,
A A A INTR

MOVL MOV MOV MOV
A, A, A, A,
R1 HOME CURS STAT

MOV MOV MOV MOV
R1, R2, R3, R4,
A A A A

MOV MOV MOV MOV
R1, R2, R3, R4,

data # data # data #data

DEC DEC DEC DEC
R1 R2 R3 R4

XRL XRL XRL XRL
A, A, A, A,
R1 R2 R3 R4

DJNZ DJNZ DJNZ DJNZ
R1 R2 R3 R4

MOV MOV MOV MOV
A, A, A, A,
R1 R2 R3 R4

D

MOV
BECD,

A

INC
R5

XCH
A,
R5

MOV
AL1,

A

ORL
A,
R5

ANL
A,
R5

ADD
A,
R5

AD DC
A,
R5

MOVX
@CURS,

A

MOVX
A,

@CURS

MOV
R5,
A

MOV
R5,

#data

DEC
R5

XRL
A,
R5

DJNZ
R5

MOV
A,
R5

E

MOV
SROW,

A

INC
R6

XCH
A,
R6

MOV
A,

VPEN

ORL
A,
R6

ANL
A,
R6

ADD
A,
R6

ADDC
A,
R6

MOV
R6,
A

MOV
R6,

#data

DEC
R6

XRL
A,
R6

DJNZ
R6

MOV
A,
R6

F

INC
R7

XCH
A,
R7

MOV
A,

HFEN

ORL
A,
R7

ANI..
A,
R7

ADD
A,
R7

ADDC
A,
R7

MOV
R7,
A

MOV
R7,

data

DEC
R7

XRL
A,
R7

DJNZ
R7

MOV
A,
R7

z
(J)
~ o
U1

~ r---~
o
~
tJ)
z

Ordering Information
ORDER PART NUMBERS

ROM less NS405-A12N
NS405-B12N NS405-B18N
NS405-C12N

7-42

~---,~

~* Throughput Considerations
In NS405 System Planning

The intricate timing relationships inherent in video genera­
tion require that a designer have a firm grasp of the funda­
mentals of NS405 operation in order to achieve his design
objectives. Towards this end the key facets of NS405 oper­
ation will be examined and examples given.

The NS405 is a complete video controller that reads in vid­
eo data, processes it and outputs it to a CRT. Given this,
one may derive all essential operating parameters from the
following two statements:

1. You must be able to read in video data faster than you
output it.

2. Video data accesses are based on the CPU cycle which
in turn is based on the crystal or dot clock.

Application of these two statements immediately leads to a
limitation on the character cell width as follows:

if f = crystal frequency or dot clock

then (f +1) +15 or (f +1.5) +15 = CPU Instruction Execu­
tion Clock Frequency

Since there are three video data accesses each CPU In­
struction Execution cycle, there are 3 • (f + 1) + 15 or 3 •
(f + 1.5) + 15 video data accesses per second.

if w=dot width of character cell then f+w=number of
character cells being displayed per second.

Statement 1 says that video data accesses/sec :<: display
characters/ sec

for CPU Clock + 1

3· (f+1)+15:<:f+w

f+5:<:f+w

Ys:<:1/w

for CPU Clock + 1.5

3· (f+1.5)+15:<:f+w

(3· f)+22.5:<:f+w

3/22.5:<: 1/w

w:<:5 w:<:~5

So depending on the CPU clock divide factor (+1 or +1.5)
the character cell width must be a minimum as shown.

Cell width also impacts CPU throughput since both the CPU
and Video controller vie for video memory access through
the DMA controller. The rules of access are simple and
straightforward. The Video Controller gets as many of the
accesses as it needs with the CPU getting any left over. The
maximum access rate as already shown is f+5 or f+7.5
depending on the CPU clock divide. If the CPU attempts a
video memory access when things are very busy it will be
put into a wait state and remain frozen until things clear up.
Of course, no display characters are necessary when the
display is blanked, so during the horizontal and vertical re­
trace periods the CPU has unlimited access to video memo­
ry.

Normally, the CPU doesn't have to wait until horizontal re­
trace to get into video memory, but exactly how often it can
get in during a display line requires analysis of the worst
case video requirements.

Since the results can vary dramatically depending on the
parameters chosen, two typical cases will be presented.

I. With a dot clock of 18 MHz the display line consists of
80 character cells, 9 dots across. Since the CPU clock
divide must be 1.5 the video memory access rate is 18
MHz+7.5=2.4 MHz.

National Semiconductor
Application Brief 14
James Murashige

To display one line requires (9X80)/18 MHz=40 us.

In one line time there are 2.4 MHzX40 us=96 video
memory accesses. Of the 96, 80 are required for the
characters displayed in the line leaving 16 available for
the CPU. This is an average of one every six video
memory accesses or once every two CPU instruction
cycles. This would be fine since all CPU video memory
instructions require two instruction cycles to execute
anyway. However, in addition to the DMA controller the
video circuits also employ a four level FIFO to insure a
smooth data flow. The FIFO is normally kept full at four
in which case it stops accessing video data and allows
the CPU to have all the accesses. However, the FIFO
can drop down quite far before starting to fill up again by
taking all of the video memory accesses. The net effect
is that instead of being evenly distributed, the accesses
available to the CPU are clumped together with long
gaps between clumps. Taking the worst case condition
of the FIFO being completely empty and having to fill to
four by taking the accesses which the CPU could have
gotten, the longest gap is (4X6)+5=29 accesses:::: 10
CPU instruction cycles. Generally speaking this tends to
happen towards the middle of a line since the FIFO is
filled prior to the start of a line and tries to end a line
empty. In fact, accesses for video are performed up to
the second to the last display character. The FIFO pre­
fetch for the next line is performed shortly after horizon­
tal blanking starts.

II. If the dot clock is now 12 MHz with a display line of 80
character cells 7 dots across the CPU clock divide can be
1.
The video memory access rate is 12 MHz+5=2.4 MHz.

To do one line requires (7X80)/12 MHz=46.7 us. In one
line time there are 2.4 MHzX46.7 us= 112 video memory
accesses. Of the 112, 32 are now available to the CPU.
This averages out to one every 3.5. Figuring the FIFO in,
the worst case wait for the CPU becomes
(4 X 3.5) + 2.5 = 16.5 accesses:::: 6 CPU instruction cy­
cles. A significant improvement over the first example.

In general, to maximize CPU access to video memory one
must maximize the average number of "free" accesses dur­
ing the display time. The number of free accesses as a frac­
tion of the total number available is:

(w-5d)/w Where w=character cell dot width

d = CPU divide factor of 1 or 1.5

As can be seen, throughput performance depends entirely
on the cell width and CPU clock divide. To maximize per­
formance one would try to choose a large wand a d of 1.

Applying the delay imposed by the four level FIFO, the maxi­
mum CPU delay in accessing video memory becomes =

(4w+5d)/(w-5d) Memory cycles

7-43

•

(D r---~
~

~ NS405-Series TMP External National Semiconductor
Application Brief 16
James Murashige Interrupt Processing

The TMP External Interrupt (lNTR) is a level sampled inter­
rupt input. Specifically this means that the input is sampled
once each CPU cycle with interrupts being generated as
long as the sampled input is a logic low. INTR shares pin 37
with RE10 and is sampled on each ALE rising edge as
shown in the data sheet. If a logic low level is detected,
interrupt service will commence if interrupts had been previ­
ously enabled with an EN XI instruction. Service consists of
finishing up the currently executing instruction, pushing the
PC and other pertinent information onto the stack, disabling
all interrupts while in service and finally performing a JUMP
to location 003. Upon completion of service a RETR would
be executed to pop the stack and return to where we left off
in the main program.

The exact timing involved may be observed through the ex­
ample program of Figure 1 and its instruction execution se­
quence in Figure 2. In Figure 2 the numbers shown on the
falling ALE edges are the program addresses put out by the
TMP. As written the program will loop endlessly unless di­
verted by an external interrupt such as point A in Figure 2.
Since it just missed the previous rising ALE edge it will not
be until point 8 that the logic low INTR is read in. However,
by then the CPU will have started execution of the first byte
of the JMP 11 instruction. Since instructions are always fin­
ished once started, it will not be until point C that we begin
interrupt service. At this point the next address would have
been back at 11 but we now want to service the interrupt
and push the stack. Stack pushing or popping takes 2 CPU

ADDRESS
000
001
002
003
004
oo~

006
007
006
009
OOA
OOB
OOC
000
OOE
oor
010
011
012
013
014
Ol~

OPCODE
04
10

El
93

03
04
11

cycles so the two address 11's shown following point Care
dummies. Finally, we start interrupt service at point D by
outputting address 003 and reading in the IN PORT instruc­
tion. Since the IN PORT instruction is only 1 byte long but
takes 2 CPU cycles to execute, the address "4" at point E is
a dummy and isn't really needed until point F when we read
in the RETR instruction. Like IN PORT, RETR is a 1 byte
instruction that takes 2 CPU cycles to execute. Therefore,
the address "5" at point G is redundant. Upon returning
from subroutine we immediately push the stack again (point
H) since the interrupt is still there. Note that we immediately
push the stack and do not execute the JMP at 11. Once
more we go through the interrupt service routine but this
time the interrupt ends at point I. Since it missed the preced­
ing rising ALE edge where it was still seen as a logic low, we
will immediately execute another interrupt service routine as
shown. Finally, at point J as we prepare to return from serv­
ice, INTR will be seen as a logic high and from point K
onward execution will proceed normally.

When enabling and disabling interrupts, the rules for when
you will and will not service them are predicated on the
latest sampled interrupt level and last instruction executed.
This is illustrated by the example program of Figure 3 and
instruction execution sequences of Figure 4. As shown in
Figure 4a, the interrupt goes low at point A and will be sam­
pled at the rising ALE of point 8. However, since the current
executing instruction (DIS XI at location 13) must be com­
pleted before starting interrupt service, the interrupt will be

IINEMONIC
JIIP010

IN FORT
RETR

ENXI
JIIPOOl

;RESET VECTOR

;EXTERNAL INTERRUPT VECTOR

;IIAIN PROGRAII

FIGURE 1.INTR Service Timing Example Program

TL/DD/6972-1

FIGURE 2. INTR Service Timing

7-44

locked out. Execution continues unperturbed until the inter­
rupt is re-enabled with an EN XI from location 11, point F.
Although the interrupt went logic high at point E it was still
sampled as a logic low at pOint D.

Therefore, after executing the EN XI at location 11, interrupt
service will commence as shown. If the interrupt had gone
logic high before point 0 it would have been sampled high
and no interrupt service would have been performed.

ADDRESS
000
DOl
002
003
004
oo~

006
007
008
009
aDA
OOB
DOC
000
001
oor
010
011
012
013
014
Ol~

016

OPCODI
04
10

00
93

00
O~

00
I~

04
10

Returning to the missed interrupt at pOint A, if the interrupt
low had come in time to be sampled at point G, the instruc­
tion at 12 would have been the last one executed before
interrupt service started as demonstrated in Figure 4b.

Although describing the external interrupt, all of the service
sequences presented may be directly applied to TMP inter­
nal interrupts.

IINEIIONIC
JIIPOIO

NOP
RETR

NOP
ENXI
Nap
DISXI
JIIPOIO

;RESxr VECTOR

;!XTERRAL INTERRUPT VECTOR

;IL\INPROGlWI

FIGURE 3. INTR Enable/Disable Timing Example Program
G A 8 C

INTR

AlE J1JLJl..JUL
5 12 13 14 15

TLlDD/6972-2

FIGURE 4a. INTR Enable/Disable Timing

IHTR

TL/DD/6972-3

FIGURE4b

7-45

l>
OJ . -.
en

•

~ r---~
I.l)
("t) .
z
<

TMP Rowand Attribute
Table Lookup Operation

This note describes in detail the operation of the TMP Attri­
bute Demo Program - TAD. Although a short program, it
nicely demonstrates row table lookup operation in the TMP
while at the same time putting out a visual display of the
various video attributes available in the chip. While this dis­
play management approach is much more involved than
normal sequential lookup mode, it is necessary when at­
temping to do fast screen updates or line editing with the
TMP.

The hardware environment for which the program was writ­
ten is the TMP Demo board. Appropriate references to and
descriptions of the hardware will be made as necessary. For
those who have not seen it, the net function of the program
is to put up and manage a single frame of video data. In the
top half of the display the same message is repeated 5
times but each time with a different set of attributes. In the
lower half of the display are 4 rows representing the 128
possible block graphics patterns. All of the attribute effects
displayed are achieved by updating the internal ALO attri­
bute latch at the end of each display row. At the same time
a message table lookup is performed in order to obtain the
appropriate character string that will work with the new attri­
bute set selected.

The flowchart for the program is shown in Figure 1. As you
can see, the program essentially consists of initialization
and waiting for and servicing video interrupts to manage the
screen display. Initialization starts at BEGIN with the Vertical
Interrupt Register and Timing Chain being loaded first. The
Vertical interrupt is used for end of frame synchronization

National Semiconductor
Application Note 354
James Murashige

and is set to activate after the 27th row. The Timing Chain is
loaded as follows:

TCP 0 Horizontal Length 104
1 Characters/Row 80
2 Horizontal Sync Begin 84
3 Horizontal Sync End 100
4 Character Height 10

Extra Scans/Frame 2
5 Vertical Length 27
6 Vertical Blank 25
7 Vertical Sync Begin/End 7,3
8 Status Row Begin 31
9 Blink Rate/D.C. F4H

10 Graphics Column Register = 30H
11 Graphics Row Register 36H
12 Underline Size Register 89H
13 Cursor Size Register 09H

Given these values, one can ascertain that the display is 80
columns across and 25 rows tall. The character cell height
is 10 scan lines and no status line will be displayed. The
character underline is the bottom most scan line in a cell
and the cursor occupies an entire cell. The partitioning of
the block graphics cells is as follows:

0011100
0011100
0011100
2233344
2233344
5566655
5566655
5566655
5566655

TAD Flowchart

TL/C/5729-1

FIGURE 1

7-46

Following timing chain initialization various system registers
are set to configure the chip to operate in its hardware envi­
ronment. The video memory is a 2kX8 NMC2116 located
between addresses 000-7FF. The crystal dot clock is 12
Mhz allowing us to use divide by 1 to generate the CPU
clock. Accordingly the SCR is set to 24H (SB8-15 address
output only, cell width = 7, divide by 1 for CPU clock, row
table lookup operation). RAM Bank 0 is selected and
HOME, BEGD, RAiRO are cleared. ENDD and CURS are
set to 7FFFH and AL 1 is set to FFH (no attributes selected).
Video display memory (80 X 25 char) is then cleared out by
storing spaces at all of the memory locations. Along with the
spaces, attribute latch 1 is specified to be used. Video is
then turned on by setting the VCR to 21 H (normal alphanu­
meric display, internal attribute latch operation, normal
video).

Next, the message tables are built up in the video memory.
By updating the attribute latch ALO each row, the entire
screen display can be constructed from the 7 message rows
stored in memory. Each of the message rows consist of 80
consecutive characters and are called up for display by
loading the HOME register with the address of the first char­
acter in the row. The background characters in each of the
rows are the spaces previously stored. Each of the display
characters stored use attribute latch ALO which is updated
each row. The first row (0-79) consists entirely of spaces to
provide us with a blank display row. The second row (80-
159) has the message "tmp does it BETTER'" for normal
and double high display. The third row (160-239) contains
"ttmmpp ddooeess iitt BBEETTTTEERRI!" for double wide
and double size display. Rows 4-7 contain 32 block graph­
ics characters per row for a total of 128 patterns. The 128
characters stored are merely all binary combinations of the
low 7 data bits in ascending order. The 32 characters in
each row are stored in every other memory location to
achieve a blank space between characters. For all of the
message rows, data is positioned to give a centered display
on the screen.

With initialization accomplished, we set the interrupt mask,
re-enable interrupts and wait for a video interrupt.

Video display management is performed by the internal in­
terrupt service routine located at 007 and consists of updat­
ing the HOME register and ALO at the end of each display
row. To accomplish this, a row counter (R3) is used as a
pointer into the data lookup tables which follow the interrupt
service routine. The R3 row counter is incremented on each
End of Row interrupt or preset and incremented on are­
synching Vertical Interrupt.

Because the next row pointers are pipe lined in the video
memory controller, an understanding of End of Rowand
Vertical Interrupt operation is necessary in order to correctly
set up the interrupt service routine and lookup tables. In
table lookup mode, the Current Row Start Register (CRSR),
which is a pointer to the first character address in a row, is
automatically reloaded from the HOME register after the
display of the last scan line in a row, a few characters into
horizontal blanking. The timing of the CRSR reload when
operating in sequential lookup mode is the same but in this
case the pointer is advanced by the character width of the
display row. It is the reloading of CRSR either in sequential
or table lookup modes that generates the End of Row inter­
rupt. The duration of the signal is % CPU cycle making it a
one time event each row. The End of Row interrupt register
bit is cleared when a reload of HOME, i.e., MOV HOME, A is

7-47

executed. A simple example will illustrate the pipe lining in­
volved. In Figure 2, at the end of Row 1 (Point A) an EaR
interrupt is generated. In preparation for this event HOME
should have been loaded with the starting address of ROW
2 since the interrupt is generated when CRSR reloads from
HOME. In service of the EOR, the program would load
HOME with the starting address of ROW 3 in preparation for
the EOR interrupt at Point B. However, notice that we have
an entire row time from A to B to do, the HOME reload.
Finally note that EOR's are generated at the end of all rows
except those blanked during vertical blanking. Vertical Inter­
rupt operates with the same timing as End of Row except
that it is specified to occur at the end of a particular row
designated by the Vertical Interrupt Register. The row that it
is specified to occur on must be < = Vertical Length Regis­
ter (timing chain rows are counted starting from 0). Other­
wise, it will never occur since the row counter will never
count up that far. Usually Vertical Interrupt is specified to
occur on a row blanked during vertical blanking so that it
may be used as a frame sync signal.

Returning to TAD, Figure 3 shows the interrupt positioning
for all of the rows on the screen including the blanked ones.
There are 25 displayed rows and 2 blanked ones in a frame
for a total of 27. In addition, there are 2 extra scan lines
which may be ignored as far as interrupt operation is con­
cerned. Vertical Interrupt is set to occur at the end of the
last row in the frame as shown. Row pointer operation for
rows 2 to 24 is pipe lined as described in Figure 2. At the end
of ROW 24 (point E) the CRSR will be loading the pointer to
ROW 25 and the interrupt service will load HOME with the
pointer to ROW 1. At the end of ROW 25 (point F) the
CRSR will load the pointer to ROW 1 and save it for the next
frame. Since no EaR's are generated during vertical blank­
ing, CRSR will remain static until ROW 1. At this point, it
doesn't matter what the interrupt service loads into HOME
and ALO since the Vertical Interrupt at ROW 27 will reset the
row counter and perform a new lookup for HOME and ALO.
A Vertical Interrupt will not do a CRSR load, thus the pointer
to ROW 1 will be preserved. At Vertical Interrupt, the row
counter will be reset to 0 and we will want to do a pointer
lookup for ROW 2 in preparation for the CRSR load at the
end of ROW 1 (point A). Correspondingly, the row pointer
lookup tables are organized 2 to 25, 1. Since the attribute
latches aren't pipelined, the ALO lookup table is arranged 1
to 25 since the new attribute set will be needed immediately
for the display of the next row.

Row Table Lookup Plpelinlng

ROW 1

A
ROW 2

+-
ROW3

TL/C/5729-2

FIGURE 2

l>
z . w
U1
~

•

~ r---~
in
C")

Z
<C

TAD Interrupt Positioning

DISPLAY RDW 1
A EDR

DISPLAY RDW 2

+- B EDR

DISPLAY RDW 3
C EDR · · · · · +-D EDR

DISPLAY RDW 24
E EDR

DISPLAY RDW 25

+- F EDR
BLANKED RDW 26

BLANKED RDW 27
HYINT

TL/C/5729-3

FIGURE 3

TMP Attribute Demo Program
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0000
0050
OOAO
OOFO
0140
0190
OlEO

0000

23 0000 0468
24
25
26
27
28
29
30
31
32

0003

0007

33 0007 8C
34 0008 320C
35 OOOA BBFF
36 OOOC lB
37 OOOD 234F
38 OOOF 6B
39 0010 B3
40 0011 3C
41
42 0012 231D
43 0014 6B

.TITLE MAIN, nTMP ATTRIBUTE DEMO - TAD'

James Murashige 10/05/83
;This program displays the various character attributes available with
;the TMP by dynamically updating the attribute latch each display row.
;In addition it uses End of Rowand Vertical interrupts to perform row
;table lookup screen refreshing.

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
LINE 6
LINE 7

• = 00

RESET;

• = 03

EXI:

• = 07

INI:

EOR:

o
80

160
240
320
400
480

JMP BEGIN

MOV A, INTR
JBI EOR
MOV R3, #OFF
INC R3
MOV A, #ATTO
ADD A, R3
MOVP A, @A
MOV ALO, A

;LINE 1 START,
;LINE 2 START,
;LINE 3 START,
;LINE 4 START,
;LINE 5 START,
;LINE 6 START,
;LINE 7 START,

ALL BLANKS
NORMAL MESSAGE
DOUBLE WIDE MESSAGE
FIRST GRAPHICS LINE
SECOND GRAPHICS LINE
THIRD GRAPHICS LINE
FOURTH GRAPHICS LINE

;START AT PROGRAM LOCATION 0

;VECTOR TO RESET CODE

;VECTOR TO EXTERNAL INTERRUPT PROCESSING

;VECTOR TO INTERNAL INTERRUPT PROCESSING

;READ INTERRPUT REGISTER
;HAVE AN EOR INTERRPUT
;VINT INTERRUPT
;INCREMENT TO DO NEXT ROW
;GET ATTRIBUTE LATCH 0

;LOAD ATTRIBTE LATCH 0

MOV A, #HOMHIG ;GET HOME HIGH ORDER BYTE
ADD A, R3

7-48

l>
TMP Attribute Demo Program (Continued)

Z
W

44 0015 B3 MOVP A, @A U1

45 0016 C2 MOV HACC, A ~

46 0017 2336 MOV A, #HOMLOW :GET HOME LOW ORDER BYTE
47 0019 6B ADD A, R3
48 001A B3 MOVP A, @A
49 001B 8A MOV HOME, A :LOAD HOME
50 001C 93 RETR
51 • FORM
52
53 :HOME HIGH ORDER BYTE LOOKUP TABLE
54
55 001D 00 HOMHIG: .BYTE 0 :ROW 2
56 001E 00 .BYTE 0 :ROW 3
57 001F 00 .BYTE 0 :ROW 4
58 0020 00 .BYTE 0 :ROW 5
59 0021 00 .BYTE 0 :ROW 6
60 0022 00 .BYTE 0 :ROW 7
61 0023 00 .BYTE 0 :ROW 8
62 0024 00 .BYTE 0 :ROW 9
63 0025 00 .BYTE 0 :ROW 10
64 0026 00 .BYTE 0 :ROW 11
65 0027 00 .BYTE 0 :ROW 12
66 0028 00 .BYTE 0 :ROW 13
67 0029 00 .BYTE 0 :ROW 14
68 002A 00 .BYTE 0 :ROW 15
69 002B 00 .BYTE 0 :ROW 16
70 002C 00 .BYTE 0 :ROW 17
71 002D 00 .BYTE 0 :ROW 18
72 002E 01 .BYTE H(LINE5) :ROW 19
73 002F 00 .BYTE 0 :ROW 20
74 0030 01 .BYTE H(LINE6) :ROW 21
75 0031 00 .BYTE 0 :ROW 22
76 0032 01 .BYTE H(LINE7) ;ROW 23
77 0033 00 .BYTE 0 :ROW 24
78 0034 00 .BYTE 0 :ROW 25
79 0035 00 .BYTE 0 :ROW 1
80 0036 00 • FORM
81
82 :HOME LOW ORDER BYTE LOOKUP TABLE
83
84 0036 00 HOMLOW: .BYTE 0 :ROW 2 BLANK
85 0037 50 .BYTE L(LINE2) :ROW 3 NORMAL
86 0038 00 .BYTE 0 :ROW 4 BLANK
87 0039 AO .BYTE L(LINE3) :ROW 5 DOUBLE WIDE
88 003A 00 .BYTE 0 :ROW 6 BLANK
89 003B 50 .BYTE L(LINE2) :ROW 7 DOUBLE HIGH
90 003C 50 .BYTE L(LINE2) :ROW 8 DOUBLE HIGH
91 003D 00 .BYTE 0 :ROW 9 BLANK
92 003E AO .BYTE L(LINE3) :ROW 10 DOUBLE SIZE
93 003F AO .BYTE L(LINE3) :ROW 11 DOUBLE SIZE
94 0040 00 .BYTE 0 :ROW 12 BLANK
95 0041 AO .BYTE L(LINE3) :ROW 13 DOUBLE SIZE
9S 0042 AO .BYTE L(LINE3) :ROW 14 DOUBLE SIZE
97 0043 00 .BYTE L(LINE1) :ROW 15 BLANK
98 0044 00 .BYTE L(LINE1) :ROW lS BLANK
99 0045 FO .BYTE L(LINE4) :ROW 17 GRAPHICS

100 0046 00 .BYTE L(LINE1) :ROW 18 BLANK
101 0047 40 .BYTE L(LINE5) :ROW 19 GRAPHICS • 102 0048 00 .BYTE L(LINE1) :ROW 20 BLANK
103 0049 90 .BYTE L(LINES) :ROW 21 GRAPHICS
104 004A 00 .BYTE L(LINE1) :ROW 22 BLANK
105 004B EO .BYTE L(LINE7) :ROW 23 GRAPHICS
lOS 004C 00 .BYTE L(LINE1) :ROW 24 BLANK
107 004D 00 .BYTE L(LINE1) :ROW 25 BLANK
108 004E 00 .BYTE L(LINE1) :ROW 1 BLANK

7-49

TMP Attribute Demo Program (Continued)
109 • FORM
110
111
112
113 004F FF
114 0050 FF
115 0051 FF
116 0052 FF
117 0053 EF
118 0054 FF
119 0055 F7
120 0056 B7
121 0057 FF
122 0058 E7
123 0059 A7
124 005A FF
125 005B E2
126 005C 82
127 005D FF
128 005E FF
129 005F 7F
130 0060 FF
131 0061 7F
132 0062 FF
133 0063 7F
134 0064 FF
135 0065 7F
136 0066 FF
137 0067 FF
138
139
140
141
142 0068 15
143 0069 35
144 006A 65
145 006B 231A
146 006D A2
147 006E 27
148 006F 87
149 0070 2367
150 0072 B7
151 0073 234F
152 0075 B7
153 0076 2353
154 0078 B7
155 0079 2363
156 007B B7
157 007C 2391
158 007E B7
159 007F 231A
160 0081 B7
161 0082 2318
162 0084 B7
163 0085 2362
164 0087 B7
165 0088 231E
166 008A B7
167 008B 23F4
168 008D B7
169 008E 2330
170 0090 B7
171 0091 2336
172 0093 B7
173 0094 2389

;ATTRIBUTE LATCH 0 LOOKUP TABLE

ATTO:

• FORM

.BYTE OFF

.BYTE OFF

.BYTE OFF

.BYTE OFF

.BYTE OEF

.BYTE OFF

.BYTE OF7

.BYTE OB7

.BYTE OFF

.BYTE OE7

.BYTE OA7

.BYTE OFF

.BYTE OE2

.BYTE 082

.BYTE OFF

.BYTE OFF

.BYTE 07F

.BYTE OFF

.BYTE 07F

.BYTE OFF

.BYTE 07F

.BYTE OFF

.BYTE 07F

.BYTE OFF

.BYTE OFF

;ROW 1
:ROW 2
:ROW 3
:ROW 4
:ROW 5
:ROW 6
:ROW 7
:ROW 8
:ROW 9
:ROW 10
:ROW 11
:ROW 12
:ROW 13
:ROW 14
:ROW 15
:ROW 16
:ROW 17
:ROW 18
:ROW 19
:ROW 20
:ROW 21
:ROW 22
:ROW 23
:ROW 24
:ROW 25

;START OF INITIALIZING CODE

BEGIN; DIS XI
DIS II
STOP T
MOV A, #26
MOV VINT, A
CLR A
MOV TCP, A
MOV A, #103
MOV @TCP, A
MOV A, #79
MOV @TCP, A
MOV A, #83
MOV @TCP, A
MOV A, #99
MOV @TCP, A
MOV A, #091
MOV @TCP, A
MOV A, #26
MOV @TCP, A
MOV A, #24
MOV @TCP, A
MOV A, #062
MOV @TCP, A
MOV A, #30
MOV @TCP, A
MOV A, #OF4
MOV @TCP, A
MOV A, #030
MOV @TCP, A
MOV A, #036
MOV @TCP, A
MOV A, #089

;INTERRUPTS OFF FOR NOW

;SET UP TIMING CHAIN FOR DEMO BOARD

;HORIZONTAL LENGTH

;CHARACTERS/ROW

;HORIZONTAL SYNC BEGIN

;HORIZONTAL SYNC END

;CHARACTER HEIGHT/EXTRA SCANS

;VERTICAL LENGTH

;VERTICAL BLANK

;VERTICAL SYNC BEGIN/END

;STATUS ROW BEGIN

;BLINK RATE

;GRAPHICS COLUMN REGISTER

;GRAPHICS ROW REGISTER

;UNDERLINE SIZE REGISTER

7·50

TMP Attribute Demo Program (Continued)
174 0096 B7 MOV @TCP, A
175 0097 2309 MOV A, #009 ;CURSOR SIZE REGISTER
176 0099 B7 MOV @TCP, A
177
178
179 • FORM
180 009A 2324 MOV A, #024 ;SET SYSTEM CONTROL REGISTER
181 009C 55 MOV SCR, A ;8 BI,7 DOTS, DIVIDE 1, TABLE LOOKUP
182
183 0090 C3
184 009E 27
185 009F C2
186 OOAO 8A
187 00A1 00
188 00A2 88
189
190 00A3 237F
191 00A5 C2
192 00A6 23FF
193 00A8 OC
194 00A9 8B
195 OOAA 3D
196
197
198
199 OOAB BD19
200 OOAD BA50
201 OOAF 23AO
202
203 00B1 80
204 00B2 38
205 00B3 EAB1
206 00B5 BA50
207 00B7 EDB1
208
209 00B9 2321
210 OOBB 45
211
212
213
214 OOBC 2300
215 OOBE C2
216 OOBF 236E
217 00C1 88
218 00C2 BAEO
219 00C4 BB13
220 00C6 FA
221 00C7 B3
222 00C8 80
223 00C9 38
224 OOCA 1A
225 OOCB EBC6
226
227
228 OOCD 98
229 OOCE 0334
230 0000 88
231 0001 BAEO
232 0003 BB13
233 0005 FA
234 0006 B3
235 0007 80
236 0008 38
237 0009 80
238 OODA 38

SEL RBO
CLR A
MOV HACC, A
MOV HOME, A
MOV BEGD, A
MOVL RO, A

MOV A, #07F
MOV HACC, A
MOV A, #OFF
MOV ENDD, A
MOV CURS, A
MOV ALl, A

;SELECT RAM BANK 0
;SET RAM POINTERS

;CLEAR MEMORY POINTER

;NO ATTRIBUTES FOR LATCH 1

;CLEAR OUT MEMORY

MOV R5, #25
MOV R2, #80
MOV A, #OAO

;00 25 ROWS
;00 80 CHARACTERS PER ROW
;INITIALIZE FOR A SPACE, ATTRIBUTE LATCH 1

LOOP: MOVX @RO, A
INCL RO

;STORE A CHARACTER
;INCREMENT POINTER
;TEST IF ROW DONE DJNZ R2, LOOP

MOV R2, #80
DJNZ R5, LOOP

MOV A, #021
MOV VCR, A

;TEST IF SCREEN DONE

;SET VCR FOR INTERNAL ATTRIBUTES
:INTERNAL CHARACTER GENERATOR

;FIRST LINE ARE ALL BLANKS, SECOND LINE HAS SINGLE SPACING MESSAGE
MOV A, #H(LINE2+30) ;SET RO POINTER TO FIRST LINE
MOV HACC, A
MOV A, #L(LINE2+30)
MOVL RO, A
MOV R2, #L(MSG1) ;SET R2 TO MESSAGE #1
MOV R3, # 19 ;SET R3 TO MESSAGE LENGTH

DISP1: MOV A, R2
MOV A, @A ;DISPLAY NORMAL MESSAGE
MOVX @RO,A
INCL RO
INC R2
DJNZ R3, DISP1

.FORM
;THIRD LINE HAS DOUBLE WIDE MESSAGE

MOVL A, RO ;SET RO POINTER
ADD A, # (31 + 21) ;LINES3 + 21
MOVL RO, A
MOV R2, #L(MSG1)
MOV R3, #19

DISP2: MOV A, R2
MOVP A, @A ;DISPLAY DOUBLE WIDE
MOVX @RO, A
INCL RO
MOVX @RO, A
INCL RO

7·51

» z .
w
U1
0l:Io

II
I

~ ,--,
II)
('f)

• z
<

TMP Attribute Demo Program (Continued)
239 OODB lA INC R2
240 OODC EBD5 DJNZ R3, DISP2
241 OODE 04F3 JMP FOURTH
242
243 OOEO 74
244

MSQ,l: .BYTE 'tmp does it BETTER!'

245 :FOURTH LINE STARTS GRAPHICS CHARACTERS DISPLAY
FOURTH: MOVL A, RO 246 00F3 98

247 00F4 031D
248 00F6 88
249 00F7 BB04
250 00F9 BA20
251 OOFB 2300
252 OOFD 2400
253

ADD A, # (21 + 8) ;LINE4 + 8

254
255

0100

256 0100 80
257 0101 38
258 0102 38
259 0103 17
260 0104 EAOO
261
262 0106 BA20
263 0108 AC
264 0109 98
265 010A 0310
266 010C 88
267 010D FC
268 010E EBOO
269

MOVL RO, A
MOV R3, #4
MOV R2, #32
MOV A, #000
JMP BLOOP

0100

BLOOP: MOVX @RO, A
INCL RO
INCL RO
INC A
DJNZ R2, BLOOP

MOV R2, #32
MOV R4, A
MOVL A, RO
ADD A, # (8+8)
MOVL RO, A
MOV A, R4
DJNZ R3, BLOOP

;DO 4 LINES
;DO 32 GRAPHICS CHARACTERS PER LINE

;ATTRIBUTE LATCH 0 SELECTED

;STORE CHARACTER

;INITIALIZE FOR NEW ROW
;TEMPORARY SAVE A

;POINT TO NEXT LINE

;RESTORE A
;CONTINUE IF NOT THROUGH

270
271 0110 2303
272 0112 82
273 0113 25
274 0114 2414
275

;REENABLE INTERNAL INTERRUPTS AND MASK OFF UNUSED ONES
MOV A, #03

ATTO 004F
DISP2 00D5
HOMHIG 001D
LINE2 0050
LINE6 0190
PAU 0114

NO ERROR LINES

PAU:
END
BEGIN
EOR
HOMLOW
LINE3
LINE7
RESET

272 ROM BYTES USED

SOURCE CHECKSUM= CF60
OBJECT CHECKSUM= 0576

INPUT FILE A: TAD. MAC
LISTING FILE A: TAD. PRN
OBJECT FILE A: TAD. LM

MOV MASK, A
EN II
JMP PAU

0068 BLOOP
OOOC EXI
0036 INI
OOAO LINE4
OlEO LOOP
0000 *

;REENABLE INTERNALS
;WAIT FOR A VIDEO INTERRUPT

0100 DISPl 00C6
0003 * FOURTH 00F3
0007 * LINEl 0000
OOFO LINE5 0140
OOBl MSGl OOEO

7-52

TMP - Dynamic RAM
Interfacing

TMPs Interface easily and directly to dynamic RAMs as illus­
trated in the basic TMP system schematic of Figure 1. In
addition to providing the necessary Read/Write cycle con­
trol, the TMP will also automatically refresh the memories
through the video controller, further easing interface re­
quirements.

The circuitry to the right of the TMP provides program mem­
ory interfacing and I/O support while to the left lie the dy­
namic video RAM circuits. The memory width shown here is
8 bits although 16 bits can easily be accommodated. Using
the 64K x 1 dynamic RAMs shown the entire video memory
space is filled with RAM. However, by using a slightly modi­
fied addressing configuration smaller memroy chips could
be substituted.

The requisite dynamic RAM control signals RAS, CAS and
WE are generated directly from the system bus control sig­
nals RAM ALE, RAM RD and RAM WR. RAM ALE is used
directly as RAS while RAM WR serves as WE. CAS is the
logical AND of RAM RD and RAM WR. The 16 system bus
bits are multiplexed down to the 8 bit RAM address vector
by the two 74LS157's under the control of the RAM ALE. As
configured, the row and column addresses strobed in are
S80-7 and S88-15 respectively.

With the configuration shown, the pertinent TMP Read and
Write cycle timing parameters for Figure 2 are listed in Table
1. Going through the table one sees that the TMP easily
interfaces to 150 ns access RAMs and will routinely work
with 200 ns RAMs. The four parameters which may be a
tight squeeze for 200 ns RAMs are:

1. tAAG- Access Time from RAS is max 150 ns, typ 220 ns.
This is a basic access time requirement which ne­
cessitates fast parts.

2. tAAH- Row Address Hold Time is min 10 ns, typ 15 ns.
This parameter is entirely dependent on the
switching speed of the 74LS157.

3. tACO- RAS to CAS Delay Time is min 10 ns, typ 50 ns.
This parameter isn't too critical since most dy­
namic RAMs internally gate the CAS signal
should it come along too early.

4. tAP- RAS Precharge Time is min 100 ns, typ 135 ns.
Since RAS is actually the RAM ALE signal tAP is
the high time of RAM ALE.

However, rather than getting faster RAMs one could also
meet spec by running the TMP CPU slower, thereby stretch­
ing out the allowable access time.

Since the TMP video controller will regularly and automati­
cally access video memory in order to obtain characters for
display, one may have dynamic RAM refreshing performed
automatically by making sure that the required number of
consecutive address locations (ROW Addresses) are ac­
cessed in the alloted time. Typically this is 128 ROW ad­
dresses in 2 ms.

For example, in a typical system we may have an 80 column
by 25 row display with each row consisting of 10 scan lines.
Each scan line has a period of 60.67 us. The vertical blank

National Semiconductor
Application Note 355
James Murashige

period consists of 25 scan lines for a total duration of 1.52
ms. Assuming sequential rather than table lookup operation,
80 consecutive character addresses are accessed each
scan line and a 160 consecutive character addresses are
accessed every 2 rows; more than enough to refresh all of
the RAS rows. Of course one must be sure that the memory
addresses of any two consecutive rows encompass all 128
possible RAS addresses. In the middle of the screen the
worst case refresh period is 11 scan lines (.667 ms), since
to do 160 consecutive addresses requires one complete
row plus the first scan line of the next row. At the bottom of
the screen the refresh period must also include the vertical
blank time since no video characters are accessed then. In
this case refresh stretches out to a worst case 2.184 ms.

Although in this example we exceeded the 2 ms refresh
period, there are a number of things that we could do to get
things back into spec. For example, we could cut down on
vertical blank time, use memory chips with longer refresh
periods, or have the CPU refresh video memory during verti­
cal retrace. Taking the case of using different memory
chips, another popular refreshing arrangement is 256 row
addresses in 4 ms. In the middle of the screen this gives us
a worst case period of 10 + 10 + 10 + 1 scan lines or 31
X 60.67 us = 1.88 ms. Adding in the vertical blanking peri­
od the absolute worst case refresh delay is 1.88 + 1.52 =

3.4 ms. Of course in this arrangement, making sure that any
four consecutive rows encompass all 256 RAS addresses is
much more difficult.

When operating in pixel mode meeting refresh requirements
isn't as difficult since each scan line will access a different
set of consecutive RAM addresses.

Returning to the circuit of Figure 1, we have assumed that
S80-7 are multiplexed address/ data while S88-15 output
addresses only. Since the RAM addresses are latched in 8
bits at a time there is no need for a separate latch for S80-
7 since all 8 bits are clocked in on the falling ALE edge.
However, when operating with smaller 8K or 16K RAMs
where only 7 bits are clocked in at a time, latching arrange­
ments for S87 must be made. An example of this is shown
in Figure 3 where bits S80-7 are all latched by the
74LS373.

Normally I/O registers, as well as other memory banks, will
also be memory mapped into the 64K video RAM space. In
order to do this some sort of chip enabling scheme must be
worked out since the dynamic RAMs have no direct enable
control. One possibility is shown in Figure 4 where the RAM
bank CAS and WE are disabled unless selected by the
74LS138 decoder. In this way the RAM output drivers will
remain TRI-STATE® and no data will be written unless the
bank is selected. However, memory refreshing as controlled
by RAS will still be performed on each RAM bank.

8y expanding on these basic examples a memory configu­
ration for the TMP utilizing dynamic memories may be quick­
ly and easily worked out.

7-53

>
Z . w
U1
U1

•

TABLE 1. TMP Dynamic RAM Interface Timing 12 MHz CPU

Symbol Parameter Min Typ Max Units

tAR Column Address Hold Time Referenced to RAS 250 280 ns

tASC Column Address Set Up Time-Dependent on Switching of 74LS157 25 35 ns

tASR Row Address Set Up Time 20 90 ns

tCAC Access Time from CAS 180 140 ns

tCAH Column Address Hold Time 140 250 ns

tCAS CAS Pulse Width 140 160 ns

tcp CAS Precharge Time 140 166 ns

tCRP CAS to RAS Precharge Time 100 136 ns

tCSH CAS Hold Time 250 280 ns

tCWL Write Command to CAS Lead Time 140 160 ns

tOH Data In Hold Time 160 175 ns

tOHR Data In Hold Time Referenced to RAS 180 310 ns

tos Data In Set Up Time 10 50 ns

tOFF Output Buffer Turn Off Delay 0 60 ns

tRAC Access Time from RAS 220 150 ns

tRAH Row Address Hold Time-Dependent on Switching of 74LS157 10 15 ns

tRAS RAS Pulse Width 250 280 ns

tRC Random Read/Write Cycle Time 416 ns

tRCO RAS to CAS Delay Time 10 50 ns

tRCH Read Command Hold Time 100 175 ns

tRCS Read Command Set Up Time 100 175 ns

tRP RAS Precharge Time 100 135 ns

tRRH Read Command Hold Time Referenced to RAS 100 175 ns

tRSH RAS Hold Time 140 160 ns

tRWL Write Command to RAS Lead Time 140 150 ns

tWCH Write Command Hold Time 140 150 ns

tWCR Write Command Hold Time Referenced to RAS 160 275 ns

twcs Write Command Set Up Time-Dependent on Delay of 74LS08 5 11 ns

twp Write Command Pulse Width 140 150 ns

7·54

5V

10k

29

EA
SO

FEMALE
SI RS232

CONNECTOR

30
PSEN

35 5V 5V
RE12

36 3.9k 3.9k REll
37

RE10
38

At
RE9

NS405 RE8
39

ALE
21

47 MS8

'"' U, 5 7 6 12 11 10 13 9
U1

14 AD Al A2 A3 A4 A5 A6 A7
DO

1 All M88264 RAS
SBO 01

00 CAS
2 A12 MB8264

SBl
01 Wii
DO

Vss Al3 MB8264 3 01
SB2 Vee

DO XTALl
A14 MB8264 4 01 32 23

SB3 lN9l4
DO 5V U 5

Al5 MB8264

SB4
01 20 pF 12 MHz

DO

1q'~1' l' 6 A16 MB8264

SB5
01

DO

7 A17 MB8264

SB6
DI

DO

8
AlB MB8264

01
SB7

TUC/5732-1

FIGURE 1. TMP with 64K Dynamic Memory

SSE-NY

II

&I)
&I)

Ti ming Diagrams Cf) .
Z
<C Read Cycle Timing Diagram

VlH

HAS
Vll

VIH

CAS
Vll

VIH
ADDRESSES

Vll

VIH

WE
Vll

DOUT
VOL

m DDN'TCARE

TL/C/5732-2

Write Cycle (Early Write)

VIH
HAS

Vil

VIH

CAS
Vil

VIH
ADDRESSES

Vil

VIH
WE

VIL

DIN

DOUT
VOL

1m DON'TCARE

TLlC/5732-3

FIGURE 2.

7·56

SE

SBB

SB9
SB10

74LS157

AD 1Y SBO
A1 2Y SB1

DYNAMIC A2 3Y SB2

RAM A3 4Y
A4 1Y
A5 2Y
A6 3Y

4Y

74LS157 RAM ALE

SB11

SB12
SB13

--SB14
--SB15

FIGURE 3. TMPAddress Multiplexing for 16K Dynamic RAMs

RAS"'I1~--------RAM ALE

~~ __ ~'-~~-RAMWR
_...r--RAMRD

74LS138 64k MEMDRY SPACE
DIVIDED INTO ak BANKS

FIGURE 4. Chip Enabling Dynamic RAMs

7-57

TL/C/5732-5

l> z .
w
U1
U1

TL/C/5732-4

•

TMP External Character
Generation
Built into the TMP video circuitry is the ability to access an
external character generator to display custom FONT sets.
In addition to the flexibility afforded by user selectable
FONTs, by going "external" the number of different charac­
ter patterns directly addressable is virtually limitless. On the
other hand the disadvantages of going external are the ad­
ditional hardware necessary to control data routing and the
general need to use faster memories.

Figure 1 shows a minimum configuration with which to do
external character generation. In the TMP, external charac­
ter generation is selected through Video Control Register
bits 6, 7 and is a cross between normal alphanumeric and
pixel graphics display modes. Like normal alphanumeric
mode the TMP sequences through the video memory ad­
dress space based upon the screen format specification.
But instead of routing the data through the internal charac­
ter generator, it is treated as pixel data and directly inserted
into the video dot stream. In effect what we are doing exter­
nally is duplicating the internal character generator ROM. In
external mode video attributes are fully operational except
for double height and block graphics.

Operation of the circuit shown is straight forward and fol­
lows a pipe-line approach. On a video data read the display
memory address is output onto the system bus with the 8
low order bits being latched by the 74LS373. On the RAM
AD signal the 2116 display RAM ouputs a data character
onto the pipeline bus which is used to address the
MM52116 character generator which in turn deposits the
required pixel data onto the system bus so that it may be
read in. The 2116 determines which character is to be
looked up in the 52116 while the 74LS163 tells the charac­
ter generator which row in the character we wish to look at.
The 74LS163 is a counter which is appropriately clocked by
the horizontal sync pulse so that we will advance each scan
line to point to the next row in the character FONT. At the
end of each screen row the counter must be cleared in
preparation for the display of a new row. This is the function
of the Scan Count Clear signal which is available as a multi­
plexed output on t\1e RE11 pin. It is a low going signal which
pulses for 1 scan line time during the last scan line in a
screen ROW. Its timing is shown in Figure 2. Note that since
the 74LS163 is a fully synchronous counter the clear input
will not be accepted until the very last H-Sync clock pulse in
the screen row. Because of the necessity to not clear the
counter before all pixel data is brought in, nor to delay clock­
ing lest the Scan Count Clear pulse be missed, the starting
H-Sync clock edge must be postioned close to the start of
horizontal blanking.

Continuing with the read operation, we see that video RAM
is only accessed if SB15 is low, i.e., the lower 32K. Note that
the 52116 used here contains 128 characters in a 5 x 7
FONT. Consequently, it has 5 data output lines connected

National Semiconductor
Application Note 367
James Murashige

to the system bus. The other three "dummy" lines shown
connected are actually output bits which are always 0 by
default, thus giving us blank spaces. There are two reasons
why the character bits start on SB1. The first is that since
everything brought in is considered pixel data, spaces be­
tween characters must be externally inserted. The second is
that the video controller always brings in 8 bits even though
the cell width can be defined to be 9 or 10. In these in­
stances the 9th and 10th bits repeat what was encoded into
the SBO bit. As a result external characters can practically
be at most 7 dots wide although the cells can be up to 8, 9,
or 10 dots wide. Cell and/or character heights can be up to
16 lines tall as specified by the Character Scan Height Reg­
ister.

On a video memory write, data is routed through the
81 LS95, onto the pipe-line bus and into the 2116. Writing
into the 2116 is controlled by RAM WR as shown. Ordinarily
the MSB data bit is used for internal attribute latch selection
and could be directly connected to the SB7 line if character
cells were specified to at most be 7 dots wide. Otherwise
SB7 will be needed for pixel generation as shown in Figure
1, thereby rendering internal attribute latch selection use­
less. In this case both internal attribute latches would have
to be loaded with the same values. As shown here, 7 video
RAM data bits are used to address the 128 possible charac­
ters in the 52116. If a larger character generator were avail­
able, additional data bits could be used to select from a
larger character set. Since the TMP features a 16-bit multi­
plexed address/data bus, by using all 16 available data bits
we could address 65,536 different character patterns

With the video data pipe-lined as shown, very fast memory
circuits are required for external character generation. With
a 12 MHz CPU clock, character pixel data must be available
within a max of 220ns (typ. 300ns) after an address goes
out. To accomplish this the character generator will typically
have to be bipolar and the video RAM fast MOS. However, if
faster memories are a problem, access times may be
stretched out by slowing down the CPU clock since video
RAM cycling is based on the CPU clock. For instance with a
CPU clock of 8 MHz, access time stretches out to 385 ns
max, 500 ns typo If using the divide by 1.5 factor on the
crystal to obtain the slower CPU clock, remember that due
to system constraints the character cell MUST BE AT
LEAST 8 DOTS WIDE. In Figure 1 the 2116 output enable is
shown being driven by RAM RD. Although this may seem
redundant and will slow things down (why not just leave the
output enabled?) it is necessary in order to avoid bus con­
flict when doing a memory write operation.

By expanding on this basic circuit, numerous options such
as external attributes, expanded character sets and dynam­
ic RAM may be added to achieve the desired end system.

7-58

TMP EXTERNAL CHARACTER GENERATOR

11
SB10

10
SB9

9
SB8

19 18 8
8Q 80 SB7

16
70 70 17 7

SB6
15 14 6 TMP

60 60 SB5
12

50 50
13 5

74LS373
SB4

9
40 40

B 4
SB3

6
3D

7 3
3D SB2

5
20 20

4 2
SBl ----;

10 ENG 10
3 1

SBD
ALE ~ DE RE11

111 .:!J
RAM r1 r6
iiD SB15 5V

RAM
IzD h8 121 ALE 18 16 14 12 8 6 4 2 13 14 15 16 17 3 2 5V

RAMr-G

AS A7 A6 A5 A4 A3 A2 Al .! CSl CS2 CS3 01 02 03 O. 05
CK D CUl J ii1 DUMMY

WR 81lS95JJ. DUMMY 1I274LS74 _ 4 19 ii2 ----!.!!.
19 12 23 1 2 3 4 5 6 7 8 Y8 Y7 Y6 Y5 Y 4 Y3 Y2 Yl

DUMMY o PR

A1D A9 AS A7 A6 A5 A4 A3 A2 Al AD 17
17 15 13 11 9 7 5 3 5

07

06
16 19

A6 MM52116FOW
05

15 22
A5

04
14 23

A4
2116 13 1

03 A3

02
11 2

A2
10 3

Al 01

DO
9 4

AD
CS DE WE l3 L2 II lO

p8 120 121 1~1 1~2 7 8

SB15 RAM RAM 13 14

Rli Wii
H SYNC...! ClK OD Oc Os IlA

1

5V....!!.
74lS163 ClR

SCAN COUNT CLR lO
ENP ENT

P 110

5V 5V
TL/C/5731-1

19£-N'f

I

HORIZONTAL SYNC

SCAN COUNT CLEAR

SCAN COUNT CLEAR TIMING

HORIZONTAL HORIZONTAL
BLANKING BEGINS BlANKING ENDS

LAST SCAN LINE IN ROW
OR FRAME BEING DISPlAYED

'--.3 CHARACTER *EDGE CLOCKS CLEAR

HORIZONTAL HORIZONTAL
BLANKING BEGINS BLANKING ENDS

FIRST SCAN LINE IN NEXT ROW
BEING DISPlAYED

I - WIDTH TIMES INTO SCAN LINE COUNTER

----~I--------.~------~
TL/C/5731-2

• Edge must come before Scan Count Clear goes away but not before the video controller has brought in all necessary display Information for the last scan line.
Edge should not be more than 3 character widths from the beginning of blanking.

7-60

NS405 TMP Logic Analyzer

INTRODUCTION

The NS405 TMP is ideally suited for use in Test and Instru­
mentation equipment as the system or display controller. To
demonstrate this, the following note describes how to turn
the NS405 Demo Board into a simple 8 bit Logic State Ana­
lyzer. Featured in this system is a data capacity of 156 eight
bit words, 21 J.ls data acquisition time, keyboard command
entry, UP/DOWN rOiling scroll and 24 line data display.

SYSTEM ARCHITECTURE

All of the necessary resources to build our system are avail­
able in a TMP Demo Board system when normally set up as
a data terminal. Commands are entered through the at­
tached ASCII encoded keyboard with data being strobed on
the external interrupt. Data words are input through the
switch configuration register SW2 by strobing the Light Pen
interrupt. Video is output to the attached display monitor.
The only real difference between our Logic Analyzer and the
Data Terminal is the ROM software in U9 running the TMP.
An overview of the system is shown in Figure 1.

In order to maximize the available 2k of video RAM, a dis­
play line length of 13 was chosen. This yields 157 lines of
display information (157 X 13 = 2041), one of which is
used to display title information. Thus our display data field
consists of 156 lines of information, any 24 of which may be
displayed at any given time. On each line is displayed the
STEP number, followed by 2 spaces and 8 bits of 1 or 0
information. A typical display pattern is illustrated in Figure
2. By manipulating the pointer registers in the TMP DMA
controller, the Title line is made to be stationary while the
rest of the screen scrolls. This is accomplished by reversing
the roles of the HOME register and Status Section SROW
pointer. Specifically HOME points to the last row in memory
which holds the title information while the status section is
set to start after the display of the first row. Scrolling is
accomplished by bumping the SROW pointer up or down 1
line width and checking for end of memory conditions.

National Semiconductor
Application Note 369
James Murashige

S T E P 7 o A T A 0 _STATIONARY

0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 2 1 1 1 0 0 0
0 3 1 1 1 0 0 0
0 4 1 1 1 0 0
0 5 1 1 1 0
0 6 1 1 1 0
0 7 1 1 1 0
0 8 1 1 1 0
0 9 1 1 1 0
1 0 1 1 1 0
1 1 1 1 1 0
1 2 1 1 1 0 SCROWNG
1 3 1 1 1 0 FIELD
1 4 1 1 1 0
1 5 1 1 1 0
1 6 1 1 1 0
1 7 1 1 1 0
1 8 1 1 1 0
1 9 1 1 1 0
2 0 1 1 1 0
2 1 1 1 1 0
2 2 1 1 1 0

o 2 3 11 o 0 o 0 0 0

TLIDD/6970-2

FIGURE 2. TMP Logic Analyzer Screen Format

SYSTEM SOFTWARE

Since the system must rely on external events at several
points before proceeding with processing, an interrupt driv­
en approach was taken in structuring the software. A flow­
chart for the main program is shown in Figure 3. After sys­
tem initialization there are 2 levels of processing associated
with our logic analyzer operation. The first is a wait for an
external interrupt signifying a new keyboard command. Re­
ferring to the keyboard service routine in Figure 4, the key is
first read in and decoded as to function. In our simple sys­
tem there are only 3 commands:

S or s = Start data acquisition
U or u = Scroll display up
I or i = Scroll display down

VIDEO OUT

t------~ILlGHT PEN INTERRUPT

SYSTEM BUS

210(8
VIDEO RAM __ ...

NS405
TMP

EXTERNAL INTERRUPT 1-----4

MONITOR

U9
PROGRAM

ROM

FIGURE 1. TMP Logic Analyzer (System Overview)

7-61

TLIDD/6970-1

~
Z

I
W
Q)
CD

• I

The scrolling functions are easily handled in the service rou­
tine by bumping the memory pointers and checking for an
end of memory condition. A command to start data acquisi­
tion moves us to our second level of processing-the actual
acquisition and display of data.

In both the keyboard and data acquisition interrupt service
routines, flags FO and F1 are used to pass system status
back and forth from the main program. In this way the main
program holds at major points while the service routines
accomplish their functions. The data acquisition routine
does nothing more than read data in from the SW2 port,
store it in video memory and check a loop counter to see
whether we have read in enough data. Since the Light Pen
interrupt is being used, only high to low transitions will initi­
ate an SW2 read. While very little is being done in data
acquisition, it is time consuming because it's done in soft­
ware. A count of Instructions yields a worst case processing

INITIALIZE
SET UP TIMING CHAIN AND VIDEO

POINTERS. CLEAR MEMORY. RESET
"START" AND "THROUGH" BITS.

PUT UP TITLE INFORMATION.
II OFF. EXI ON

RESET "START." TURN OFF VIDEO.
CLEAR MEMORY, SET POINTERS.

CLEAR PENDING INTERRUPTS. ENABLE
INTERNAL INTERRUPTS

DISASSEMBLE DATA. TURN VIDEO
ON. REENABLE KEYBOARD INTERRUPT.

RESET "THROUGH"

WAIT FOR
KEYBOARD COMMAND

DATA ACQUISITION
LOOP

TL/DD/6970-3

FIGURE 3. TMP Demoboard Logic Analyzer
Main Program

7-62

time of 21 JJ.s between data strobes. In addition, since the
data isn't latched it must remain stable until the actual read
occurs. Following data acquisition, the stored data words
are disassembled into their ASCII "1's" and "O's" patterns
and the data entires numbered. With data acquistion com­
pleted, the program returns to await another keyboard com­
mand.

SUMMARY

As demonstrated, the NS405 is very effective as a display
controller in a video instrumentation system. Certain func­
tions, however, such as data acquisition are better left to
dedicated hardware controllers. Nevertheless, the system
as presented is still a very useful diagnostic tool. Through
small enhancements to the hardware and software, features
such as word recognition, number base conversion, wider
data words and loop delay may readily be added.

SET "STARr' BIT.
DISABLE FURTHER KEYBOARD

INTERRUPTS. WAIT FOR
CURRENT INTERRUPT TO

GO AWAY.
RETURN

TLIDD/6970-4

FIGURE 4. TMP Demoboard Logic Analyzer
Command Input Routine

READ WORD IN
CLEAR INTERRUPT FLAG.

STORE IN VIDEO MEMORY.
BUMP POINTERS

RETURN

TL/DD/6970-5

FIGURE 5. TMP Demoboard LogiC Analyzer
Data Acquisition Routine

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

07DF
07EB
07EC
0020
0000

0000

30 0000 0452
31
32
33

0003

34 0003 0412
35
36
37
38

0007

39 0007 8C
40 0008 91
41 0009 80
42 OOOA 98
43 OOOB 6B
44 oooC 88
45 OOOD EAll
46
47 oooF B5
48 0010 35
49
50 0011 93
51
52
53 0012 El
54 0013 53DF
55 0015 AA
56 0016 D353
57 0018 C627
58 00IA FA
59 001 B D355
60 001D C62B
61 001F FA
62 0020 D349
63 0022 C63C
64 0024 A624
65 0026 93
66
67 0027 95
68 0028 15
69 0029 0424
70
71 002B 99

• TITLE MAIN,' TMP LOGIC ANALYZER DEMO'

James Murashige 2/09/84
;This program turns the TMP Demo board into a simple 8 bi t logic analyzer.
;Command inputs are entered from the attached ASCII keyboard while data
;acquisition takes place through the switch configuration socket, S't/2.
;The DIP switch may have to be unsoldered from the board. Data is strobed
lin with an external clock applied to Light Pen Interrupt on 't/8A. Each time
;data acqusition is started 156 words of 8 bits each are acquired and displayed.
; Display is in the form of STEP location and the associa ted 8 bi t l' sand 0' 8

;pattern.
;Commands are S· Start data acqusition

U • Scroll display up
I • Scroll display down

LSTLIN • 07DF
MEMEND • 07EB
STLIN • 07EC

;START OF LAST LINE
; END OF MEMORY
;START OF TITLE LINE

VON • 020 ;VIDEO ON
';VIDEO OFF VOFF • 000

• • 00 ;START AT PROGRAM LOCATION 0

RESET: JMP BEGIN ; VECTOR TO RESET CODE

• • 03

EXI:

• • 07

INI:

JMP KEY

MOV A,INTR
MOVX A,@R1
MOVX @RO,A
MOVL A,RO
ADD A,R3
MOVL RO,A
DJNZ R2,NOTRU

; VECTOR TO KEYBOARD COMMAND DECODE

;DATA STROBE INTERRUPT SERVICE
; CLEAR OUT INTERRUPT
;GET DATA CHARACTER
;STORE CHARACTER AWAY
; BUMP RO POINTER

; CHECK IF THROUGH

CPL F1
DIS II

; YES THROUGH, SET INDICATOR BIT
; DISABLE LP INTERRUPT

NOTRU: RETR ; RETURN
• FORM
;KEYBOARD COMMAND DECODE
KEY: IN PORT ;KEYBOARD DATA READ

ANL A,IIODF ~CONVERT LOWER TO UPPER CASE
MOV R2,A ;SAVE COpy IN R2
XRL A,II's'
JZ START ;GOTO START
MOV A,R2
XRL A,II'U'
JZ UP ;GOTO SCROLL UP
MOV A,R2
XRL A,II'I'
JZ DOWN ; GOTO SCROLL DOWN

CKOFF: JNXI CKOFF ;NOT A VALID KEY a WAIT FOR EX! TO GO AWAY

START:

UP:

RETR ; RETURN

CPL FO
DIS XI
JMP CKOFF

MOVL A,Rl

;START BIT SET
;DISABLE FURTHER KEYBOARD INTERRUPTS

;SCROLL UP

7-63

TL/OO/6970-6

>
Z .
w en
CD

,.

en r---~
CD
Cf)

• z
cC

72 002C 030D
73 002E 89
74 002F 0314
75 0031 E2
76 0032 03FB
77 0034 E639
78 0036 27
79 0037 C2
80 0038 89
81 0039 99
82 003A OE
83 003B 93
84
85 003C 99
86 003D 03F3
87 003F AA
88 0040 E2
89 0041 03FF
90 0043 F64D
91 0045 2307
92 0047 C2
93 0048 23DF
94 004A 89
95 004B OE
96 004C 93
97 004D C2
98 004E FA
99 004F 89

100 0050 OE
101 0051 93
102
103
104
105
106 0052 C5
107 0053 c3
108 0054 15
109 0055 35
110 0056 65
111 0057 27
112 0058 87
113 0059 2367
114 005B B7
115 005C 230C
116 005E B7
117 005F 2353
118 0061 B7
119 0062 2363
120 0064 B7
121 0065 2391
122 0067 B7
123 0068 231 A
124 006A B7
125 006B 2318
126 006D B7
127 006E 2362
128 0070 B7
129 0071 2300
130 0073 B7
131 0074 23F4
132 0076 B7
133 0077 2330
134 0079 B7
135 007 A 2336
136 007C B7
137 007D 2389
138 007F B7
139 0080 2309
140 0082 B7
141
142

ADD A,#13 ;ADVANCE TO NEXT ROW
MOVL Rl,A ;SAVE NEW VALUE
ADD A,#L(-L(STLIN» ;CHECK FOR END OF DISPLAY
MOV A,HACC ;SUBTRACT STLIN FROM A
ADD A,#L(-H(STLIN) - 1) ;CARRY WILL BE SET IF A WAS> OR •
JNC UPTRU iNEW VALUE OK, LOAD SROW AND RETURN
CLR A ;RESET SROW TO BEGINNING
MOV HACC,A
MOVL Rl,A

UPTRU: MOVL A,Rl ;LOAD Rl INTO SROW
MOV SROW,A
RETR

DOWN: MOVL A,Rl ;SCROLL DOWN
ADD A,#-13 ;SUBTRACT TO NEXT ROW
MOV R2,A ;TEMP SAVE OF LOW ORDER
MOV A,HACC iNOW DO UPPER HALF
ADD A,HoFF iCARRY WILL BE SET IF A WAS 12 OR MORE
JC DNTRU ;NEW VALUE OK, LOAD VALUE INTO SROW
MOV A,#H(LSTLIN) ;RESET SROW TO LAST ROW
MOV HACC,A
MOV A, #L(LSTLIN)
MOVL Rl,A
MOV SROW,A
RETR

DNTRU: MOV HACC, A
MOV A,R2
MOVL Rl,A
MOV SROW,A
RETR

.FORM

;START OF INITIALIZING CODE

BEGIN: SEL MBO
SEL RBO
DIS XI ; INTERRUPTS OFF FOR NOW
DIS II
STOP T ;TIMER OFF
CLR A ;SET UP TIMING CHAIN FOR DEMO BOARD
MOV TCP, A
MOV A, #103 iHORIZONTAL LENGTH
MOV @TCP, A
MOV A, #12 i CHARACTERS/ROW
MOV @TCP, A
MOV A, #83 iHORIZONTAL SYNC BEGIN
MOV @TCP, A
MOV A, #99 iHORIZONTAL SYNC END
MOV @TCP, A
MOV A, #091 ;CHARACTER HEIGHT/ EXTRA SCANS
MOV @TCP, A
MOV A, #26 iVERTICAL LENGTH
MOV @TCP, A
MOV A, #24 iVERTICAL BLANK
MOV @TCP, A
MOV A, #062 iVERTICAL SYNC BEGIN/END
MOV @TCP, A
MOV A, #00 iSTATUS ROW BEGIN
MOV @TCP, A
MOV A, #OF4 i BLINK RATE
MOV @TCP, A
MOV A, #030 iGRAPHICS COLUMN REGISTER
MOV @TCP, A
MOV A, #036 iGRAPHICS ROV REGISTER
MOV @TCP, A
MOV A, #089 iUNDERLINE SIZE REGISTER
MOV @TCP, A
MOV A, #009 ;CURSOR SIZE REGISTER
MOV @TCP,A

7·64

TL/DD/6970-7

143
144 0083 2304
145 0085 55
146
147 0086 27
148 0087 C2
149 0088 OD
150 0089 OE
151 oo8A 88
152 008B 89
153 008C 2307
154 008E C2
155 008F 23EC
156 0091 OC
157 0092 8A
158 0093 23FF
159 0095 C2
160 0096 8B
161 0097 3C
162 0098 3D
163 0099 85
164 009A A5
165 oo9B 2320
166 009D 82
167
168 oo9E 3456
169
170 OOAO 05
171 OOAI 2400
172
173 OOA3 86A3
174
175
176
177
178
179 00A5 85
180 00A6 2300
181 00A8 45
182 00A9 3456
183 OOAB 27
184 OOAC C2
185 OOAD OE
186 OOAE BA9C
187 OOBO 2305
188 00B2 88
189 00B3 23CO
190 OOB5 C2
191 00B6 89
192 00B7 BBOD
193 OOB9 8C
194 OOBA 25
195
196 ooBB 66BB
197
198
199 OOBD A5
200 ooBE BA9C
201 OOCO 27
202 ooCl C2
203 00C2 2305
204 ooC4 88
205 00C5 BBOS
206 ooC7 90
207 00C8 04CB
208 ooCA FC
209 ooCB F7
210 OOCC AC
211 OOCD F6D3
212 OOCF 2330
213 OODI 04D5

.FORM
MOV A, #004
MOV SCR, A

; SET SYSTEM CONTROL REGISTER
;8 BI, 7 DOTS, DIVIDE 1, SEQUENTIAL LOOKUP

CLR A ;SET VIDEO RAM POINTERS
MOV HACC, A ; ACCUMULATOR CLEARED
MOV BEGD, A
MOV SROW, A ; SROW WILL BE OUT HOME
MOVL RO, A ;CLEAR HEMORY POINTER
MOVL Rl, A ; 1 IS SROW IMAGE
MOV A, #H(MEMEND +1)
MOV HACC, A
MOV A,#L(MEMEND +1)
MOV ENDD,A ;SET END OF MEMORY POINTER
MOV HOME, A ;SET POINTER TO TITLE ROW
MOV A, #OFF
MOV HACC,A
MOV CURS, A ;NO CURSOR
MOV ALO, A ;NO ATTRIBUTES FOR LATCH 0
MOV ALI, A ;NO ATTRIBUTES FOR LATCH 1
CLR FO ;FO IS "START" BIT
CLR Fl ;Fl IS "THROUGH" BIT
MOV A,#020
MOV MASK,A ;SET INTERRUPT MASK

CALL MEMCLR ; CLEAR VIDEO MEMORY

EN XI ; REENABLE EXTERNAL INTERRUPTS
JMP LINNUM ;DISPLAY TITLE INFORMATION

KEYIN: JNFO KEYIN ;WAIT FOR KEYBOARD INPUT

.FORM

;DATA ACQUISITION ROUTINES

CLR FO ;CLEAR START BIT
MOV A,#VOFF ;VIDEO OFF
MOV VCR,A
CALL MEMCLR
CLR A

; CLEAR VIDEO MEMORY

MOV HACC,A
MOV SROW,A
MOV R2, #156
MOV A,#5
MOVL RO,A
MOV A,#OCO
MOV HACC,A
MOVL Rl,A
MOV R3,#13
MOV A,INTR
EN II

;RESET SROW TO BEGINNING
;SET LOOP COUNTER FOR # WORDS TO READ

;SET MEMORY POINTER TO FIRST DATA DEPOSIT

;LOAD Rl WITH ADDRESS OF SWITCH REGISTER
;LOAD R3 WITH POINTER BUMP CONSTANT
; CLEAR OUT ANY PENDING INTERRUPTS

;REENABLE LP INTERRUPT

DATAIN: JNFI DATAIN ;WAIT FOR "THROUGH" BIT TO SET

; DISASSEMBLE DATA INTO DISPLAY FORMAT
CLR Fl ;RESET "THROUGH"
MOV R2,#156 ;DISASSEMBLE DATA, LOAD WORD COUNTER
CLR A
MOV HACC,A
MOV A,#5
MOVL RO,A
MOV R3,#8

;SET KEMORY POINTER TO FIRST DATA DEPOSIT
;DO 8 BITS

UNASS: MOVX A ,@RO ;LOAD IN DATA BYTE
JMP DEPST

RETRIV: KOV A,R4 ;RETRIEVE CHARACTER
DEPST: RLC A ;ROTATE BIT INTO CARRY

MOV R4, A ; TEMPORARY SAVE
JC ONE ;STORE A "1"
MOV A,#'O' ;STORE A "0"
JMP CONT

7-65

TL/OO/6970-8

:t:.
Z • w
en
CD

•

~ r---~
CD
C")
• z

ct
214 OOD3 2331
215 00D5 80
216 OOD6 38
217 OOD7 EBCA
218
219 OOD9 98
220 OODA 0305
221 OODC 88
222 OODD BB08
223 OODF EAC7
224 OOE1 2400
225
226
227 0100
228
229 0100 27
230 0101 C2
231 0102 88
232 0103 BA9C
233 0105 BBOA
234 0107 BCOA
235 0109 BDOA
236
237 010B FB
238 010C 343B
239 010E 80
240 010F 38
241 0110 FC
242 0111 343B
243 0113 80
244 0114 38
245 0115 FD
246 0116 343B
247 0118 80
248
249 0119 98
250 011 A 030B
251 011 C 88
252
253 011 D ED26
254 011 F BDOA
255 0121 EC26
256 0123 BCOA
257 0125 CB
258
259 0126 EAOB
260
261 0128 9A
262 0129 88
263 012A BAOD
264 012C BB49
265
266 012E FB
267 012F B3
268 0130 80
269 0131 38
270 0132 1B
271 0133 EA2E
272
273
274
275 0135 2320
276 0137 45
277 0138 05
278 0139 04A3
279
280
281
282 013B 033E
283 013D B3
284 OnE 93

ONE: MOV A,II'1' ;STORE A "1"
CONT: MOVX @RO,A ;STORE CHARACTER

.FORM

INCL RO ; INCREMENT POINTER
DJNZ R3,RETRIV ; CONTINUE IF WORD NOT DONE

MOVL A,RO
ADD A,1I5
MOVL RO,A
MOV R3,#8
DJNZ R2, UNASS
JMP LINNUM

l BUMP MEMORY POINTER TO NEXT WORD

l RESET BIT COUNTER
;CONTINUE IF ALL LOCATIONS NOT DONE
; JUMP TO NEXT PAGE

l LINE NUMBBRING ROUTINES
• - 0100

LIl/NUM: CLR A
MOV HACC,A
MOVL RO,A l CLEAR MEMORY PODITER
MOV R2,#156 lDO 156 LINES
MOV R3,#10 lSET HUNDREDS POINTER
MOV R4,#10 ;SBT TENS POINTER
MOV R5,#10 ;SET ONES POINTER

NUMLP: MOV A,R3 l LOOK UP HUNDREDS ASCI I CODE
CALL LKUP
MOVX @RO,A ;STORE HUNDREDS ASCII CODE
INCL RO
MOV A,R4 l LOOK UP TENS ASCI I CODE
CALL LKUP
MOVX @RO,A ; STORE TENS ASCII CODE
INCL RO
MOV A,R5 ; LOOK UP ONES ASCII CODE
CALL LKUP
MOVX fIiIRO,A ; STORE ONES ASCII CODE

MOVL A,RO l BUMP RO TO NEXT LINE
ADD A,#11
MOVL RO,A

DJNZ R5, CONNUM l INCREMENT ONES POINTER
MOV R5,1I10 ;MUST NOW INCREMENT TENS
DJNZ R4, CONNUM ; INCREMENT TENS POINTER
MOV R4,#10 ;MUST NOW INCREMENT HUNDREDS
DEC R3

CONNUM: DJNZ R2,NUMLP ;DO ANOTHER ROW

MOV A,HOME lPUT UP TITLE LINE
MOVL RO,A
MOV R2, 1113 l LOOKUP 13 CHARACTERS
MOV R3,#L(TITLE) lLOAD POINTER TO ASCII TITLE STRING

TITLP: MOV A,R3
MOVP A,@A
MOVX @RO,A
INCL RO
INC R3
DJNZ R2, TITLP

• FORM

MOV A,#VON ;TURN VIDEO BACK ON
MOV VCR,A
EN XI l REENABLE KEYBOARD INTERRUPTS
JMP KEYIN ;RETURN AND WAIT FOR NEXT START

;SUBROUTINES

LKUP: ADD A,#L(CHAR)-1;
MOVP A,@A lLOOK UP ASCII NUMBER
RETR l RETURN

7-66

TL/DD/6970-9

285
286 013F j9 CHAR: .BYTE '987654"5210'
287
288 0149 53 TITLE: .BYTE 'STEP 7 DATA 0'
289
290 0156 27 MBMCLR: CLR A ;VIDEO MEMORY CLEAR LOOP
291 0157 C2 MOV HACC,A ;ACCUMULATOR CLEAR
292 0158 88 MOVL RO,A ;RO CLEAR
293 0159 BAOO MOV R2,#0 ; INNER LOOP COUNTER SET
294 015B BB08 MOV R3, #8 ;OUTER LOOP COUNTER SET
295 015D 2320 MOV A,#020 ; SPACE CHARACTER
296 015F 80 MCLRLP: MOVX @RO,A ; STORE A CHARACTER
297 0160 38 INCL RO ;INCREMENT POINTER
298 0161 EA5F DJNZ R2, MCLRLP ;TEST INNER LOOP
299 0163 BAOO MOV R2,#0 ;RELOAD INNER LOOP
300 0165 EB5F DJNZ R3, MCLRLP ;TEST OUTER LOOP
301 0167 93 RETR
302
303 .END
BEGIN 0052 CHAR
CONT 00D5 DATAIN
DOliN 003C EXI
KEYIN 00A3 LINNUM
MCLRLP 015F MEMCLR
NUMLP 010B ONE
START 0027 STLIN
UNASS 00C7 UP
VON 0020

NO ERROR LINES

328 ROM BYTES USED

SOURCE CHECKSUM = 40D8
OBJECT CHECKSUM = 0649

INPUT FILE A LOGIC.MAC
LISTING FILE A LOGIC.PRN
OBJECT FILE A LOGIC.LM

013F
OOBB

0003 •
0100
0156
00D3
07EC
002B

;THROUGH, RETURN

CKOFF 0024 CONNUM
DEPST OOCB DNTRU
INI 0007 • KEY
LKUP 013B LSTLIN
MEMEND 07EB NOTRU
RESET 0000 • RETRIV
TITLE 0149 TITLP
UPTRU 0039 VOFF

7·67

COUNTER

0126
004D
0012
07DF
0011
OOCA
012E
0000

:t>
Z

I
w
C)
CD

TLlDD/6970-10

• I

Building an Inexpensive but
Powerful Color Terminal

Historically, the design of a color CRT terminal has involved
a significant upgrade of the circuit for a monochrome termi­
nal. The result was a stiff increase in price for the electron­
ics as well as for the monitor when going from monochrome
to color. As a result, most companies built monochrome
terminals and a few built color terminals only.

On the personal computer front where separate monitors
are common, manufacturers have started to offer video
cards which will support either a monochrome or a color
monitor. More recently, color terminals have begun to ap­
pear which are extensions of monochrome terminal families.
They require a board full of I.C.s for even the most space
efficient designs. But now, using the TMP, you can do the
same job with just one VLSI chip and a half dozen 7400
family TTL chips.

The National Semiconductor NS405 Series Terminal Man­
agement Processor (TMP) was originally conceived as a
monochrome "terminal on a chip". However, the design
team took special pains to build in "hooks" to allow users to
augment the basic features of the TMP. In particular the
TMP supports almost unlimited attribute expansion, and
therein lies the key to adding color to a TMP-based terminal.
Even nicer, the addition of color attributes does not sacrifice
any of the other powerful features provided by the TMP.

Here, we will delve into a little of the mechanics of TMP
attribute handling. The diagram in Figure 1 shows the path
of the attribute bits (normally 8) from the display memory

EXTERNAL
DISPLAY
MEMORY

(DATA AND
ATTRIBUTE
MEMORy)

TMP

National Semiconductor
Application Note 374
Leigh Cropper

into the TMP, through the FIFO, the attribute control logic,
and finally to the video output section where the attributes
are combined with the serialized video output.

Because the display memory space may be large (up to 64k
x 16), it is easy to store many more attribute bits by adding
display memory chips. A 2k x 8 RAM will hold 8 attribute bits
for every location on an 80 row by 25 line display. However,
in order to implement color attributes, three problems must
be examined: (1) how to let both the CPU and the display
controller address the extra attribute memory in a practical
manner; (2) how to imitate the behavior of the internal FIFO
and maintain proper synchronization; and (3) how to com­
bine the color attributes and the video output signal.

Before addressing the three problems in detail, a discussion
of the number and type of color attributes is in order. The
simplest type of color display would require only 3 bits (red,
green, and blue). That allows a character to be displayed in
any of 7 colors over a black background or, when reverse
video is asserted, the character is black on a colored back­
ground. For independent control of both the foreground and
background colors, 6 bits are required. To get more shades
of color, add more bits.

A practical approach employs a 2k x 8 RAM for the color
attribute memory. Three of the bits control the foreground
color, three control the background color and the remaining
two may be used to adjust intensity (1 for foreground and 1
for background).

DOT
SHInER

AND
VIDEO

OUTPUT
LOGIC

VIDEO
OUT

TL/DDI7923-1

FIGURE 1. TMP Attribute ProceSSing

7-68

Now let's tackle the problems one by one.

1. COLOR ATIRIBUTE MEMORY ADDRESSING. When
fetching data for the display, we need to get 24 bits in
parallel (8 data, 8 attribute and 8 color attribute). But
when the CPU accesses memory, it can handle only 16

r-----------~------------~----------~2K

COLOR
ATTRIBUTE
MEMORY

ATTRIBUTE
MEMORY

DATA
MEMORY

TL/00I7923-2

FIGURE 2. Memory Map as Selected for Screen Refresh

The mapping is implemented by the following circuit:

TMP

SBI-SB15 ... -

SBD-SB7 "a..,. ..

YO

LATCH

OCTAL
TRANSCEIVER

A11-A15

AD-A10

DECODER

bits at a time, so the CPU must be able to read and write
color attributes in a different bank of memory from that
where the data and ordinary attributes are stored. For an
80 character by 25 row display the memory could be
mapped as shown in Figures 2 and 3:

4K

COLOR
ATTRIBUTE

MEMORY

7 6 5 4 3 2 1 0
2K

ATTRIBUTE DATA
MEMORY MEMORY

TLl0017923-3

FIGURE 3. Memory Map as Selected
for CPU Access

SELECT D-2K

SELECT 2K-4K

TL/00I7923-4

FIGURE 4. Color Attribute Memory Mapping Circuit

7-69

•

During a display refresh cycle the color attribute memory is
selected by the low bank select (the same select signal that
enables the data and attribute memories). However, the col­
or attribute bits drive the external FIFO's, whereas the out­
put from the other two memories is routed through the TMP.
The data path from the color attribute memory to the TMP is
buffered by an octal transceiver which is disabled when the
low bank is selected. During a CPU access to color attribute
memory, the high bank select enables the color attribute
memory and the octal transceiver. The direction control of
the transceiver is controlled by the RAM RD signal from the
TMP.

2. EXTERNAL FIFO SYNCHRONIZATION. The TMP pro­
vides FI ClK (FIFO Input Clock) and FO ClK (FIFO Out­
put clock) signals which may be used to clock an exter­
nal FIFO. The FI ClK signal is identical in timing and duty
cycle to the RAM RD signal except that FI ClK is dis­
abled (stays high) when the CPU accesses display mem­
ory. When the 74lS224 is used as an external FIFO, FI
ClK must be inverted. The rising edge of FO ClK occurs
when output of the internal FIFO is loaded into the inter­
nal dot shifter. The FO ClK is used to empty a word from
the external FIFO and clock it into an octal latch.

3. COMBINING COLOR ATTRIBUTES WITH VIDEO. When
using foreground and background color attributes, a
74lS157 multiplexer works nicely to switch between the
two. The eight color attribute bits from the latch are sep­
arated into groups of four. The video output signal is
used to switch the multiplexer. When the video output is
high, foreground attributes are selected: and when the

10

video output is low, background attributes are selected.
The outputs of the multiplexer (red, green, blue and in­
tensity) directly drive the color monitor inputs. A minor
problem arises because the video output from the TMP
already includes the blanking signal. That makes it im­
possible to differentiate between a series of spaces in
the middle of the screen and the horizontal blanking in­
terval. In either case, the video output is low. The easiest
solution is handled in software. let's assume that we
want an 80 column display and are using three 2K x 8
memory chips for the data, attribute and color memories.
We set up the TMP for 81 columns and then configure
the program so that the 81 st column always contains a
space code with all attribute bits off (including color).
That way the background color will always be black dur­
ing both horizontal and vertical retrace. The cost is 25
locations in each of the memories, but we can afford that
many because an 80 x 25 display requires 2000 loca­
tions, leaving 48 free.

A Practical Example
Here we will present a color terminal circuit with the associ­
ated program as an example of what you may want to do.
We started with the terminal design of the TMP develop­
ment board. See the block diagram in Figure 5.

The block diagram of the color terminal (with the old por­
tions of the original monochrome terminal unshaded and
the new color circuits shaded) appears in Figure 6. The new
circuitry was added in the prototyping area of the develop­
ment board.

TLlDD17923-5

FIGURE 5. TMP Development Board Block Diagram

7-70

10

FIGURE 6. TMP Development Board Color Circuitry Block Diagram .

I

RED
GREEN
BLUE
INTENSITY

a:

§
z z c
u ...
2
a::

TUDD17923-6

17l£-NV

COLOR ATTRIBUTE BIT ASSIGNMENTS The demonstration program which runs on the development

The bit assignments are: board allows limited color support. The Escape, V sequence

Bit 0 - Blue foreground
from the keyboard or the receiver prompts the program to
treat the next character received as an eight bit color attri-

Bit 1 - Green foreground bute byte with the bit assignments as listed above. That
Bit 2 - Red foreground byte is written to the color attribute memory as each suc-
Bit 3 - Blue background ceeding character is received, until another escape, V se-

Bit 4 - Green background quence is encountered. The table which follows Includes
the foreground and background color combinations for

Bit 5 - Red background characters which can be entered from the keyboard, but it
Bit 6 - Foreground intensity ignores the effect of the 2 high-order bits (foreground and
Bit 7 - Background intensity background intensity).

Without using the intensity control bits you get 8 foreground COLOR COMBINATIONS FOR RGB MONITORS
colors: red, green, blue, magenta, cyan, yellow, white, and Table I gives the Foreground/Background color combina-
black (beam off). The same 8 colors may be independently tions that occur when using the '<ESC> Vv' Escape se-
selected for the background. There are several RGB moni- quence. To set the current color attribute, all that you need
tors available in the moderate price range with sufficient to do is select the color combination from the Table below,
bandwidth to work with a 12 MHz TMP. Some of them in- and send it to the NS405 as part of the <ESC> Vx se-
clude a separate intensity (or luminence) input. Others in- quence. For example. '< ESC> V'" causes the Foreground
clude internal decoding circuitry which provides the ability to color to be green and the Background color to be
handle 4 bits of color input and provide as many as 16 dif- red ... not all that pleasing, to my tastes, but choose what
ferent colors. you will.

TABLE I
Foreground/Background Color Combinations

Char Fore/Back Char Fore/Back Char Fore/Back

sp Black/Red 6 Yellow/Yellow K Cyan/Blue
I Blue/Red 7 White/Yellow L Red/Blue

" Green/Red 8 Black/White M Magenta/Blue
Cyan/Red 9 Blue/White N Yellow/Blue
$ Red/Red : Green/White 0 White/Blue
% Magenta/Red ; Cyan/White P Black/Green
& Yellow/Red < Red/White Q Blue/Green
,

White/Red = Magenta/White R Green/Green
(Black/Magenta > Yellow /White S Cyan/Green
) Blue/Magenta ? White/White T Red/Green . Green/Magenta @ Black/Black U Magenta/Green

+ Cyan/Magenta A Blue/Black V Yellow/Green
, Red/Magenta B Green/Black W White/Green

- Magenta/Magenta C Cyan/Black X Black/Cyan
Yellow/Magenta 0 Red/Black Y Blue/Cyan

/ White/Magenta E Magenta/Black Z Green/Cyan
0 Black/Yellow F Yellow/Black [Cyan/Cyan
1 Blue/Yellow G White/Blue \ Red/Cyan
2 Green/Yellow H Black/Blue] Magenta/Cyan
3 Cyan/Yellow I Blue/Blue A Yellow/Cyan
4 Red/Yellow J Green/Blue White/Cyan
5 Magenta/Yellow

7-72

TMP Extended Program
Memory Application Note

OVERVIEW /INTRODUCTION
The purpose of this application note is to describe methods
for expanding the program memory of the NS405 series
TERMINAL MANAGEMENT PROCESSOR (TMP) and to
provide direction in software techniques for utilizing the ex­
panded memory efficiently. The chip has a built-In capability
of addressing up to 8k of external program memory (ROM),
via the ROM Expand Bus, and 64k of video display memory
(RAM), via the System Bus. Although 8k of program memo­
ry is sufficient for most applications there are many applica­
tions, such as emulating multiple terminals or using many
look-up tables, that require still more memory. However, it is

National Semiconductor
Application Note 399
Richard Lazovick

very rare that the entire 64k of video RAM is used since that
is more than enough memory to store two screens of data in
the pixel mode or thirty-two screens of data in the alphanu­
meric/block graphics mode. Therefore it is practical to use a
video memory address to switch between two or more 8k
memory arrays.

The idea behind using a bank select switch to change from
one memory array to another is not new, nor is it difficult,
and when implemented properly it can be a very useful tool.
The TMP has all the necessary control signals to make both
the software and hardware straight-forward.

Block Diagram

ROM EXPAND BUS

u. -u-
SYSTEM BUS

TMP

CONTROL 8k 8k n ROM ROM

•

• • •

I
ARRAY
SELECT

LOGIC

TL/DD/8430-1

7-73

•

(7)
(7)
C') .
z
<C

SOFTWARE

For purposes of demonstration it will be easier to look at the software aspects of using an array select switch first, then
designing the hardware to implement it.

The easiest case occurs if we use less than 16k of display memory. Then we have two system bus address lines available to
select either of our two arrays. To switch arrays all we have to do is read from (or write to) an address that uses the address line
you wish to toggle. It is safer to read from the address since we do not want to change data in memory at the location addressed
by the lower order address lines.

Suppose we choose S814 to select the low order array and S815 to select the high order array. The program steps we would go
through to switch from the low array to the high array could be:

MOV A,#OBO
MOV HACC,A
MOVL RO,A
MOVX A,@RO

;Load HACC wI BOH to set SB15 HI
;and set SB14 LO. We do not care
;about the other address bits.
;SB15 goes HI.

In general we will want to switch arrays several times, and we will want to be able to conveniently control the destination address
in the new array.

Since it is very cumbersome to rewrite the whole sequence everytime, let's mimic the internal select memory bank command
(SEL M8x) by using a subroutine and a CALL followed by a JMP to conveniently control our array switching.

CALL SELHA ;Select HI order array.
JMP HERE ; Jump to HERE in new array.

SELHA: MOV A,#080 ;Load HACC wI BOH to set SB15 HI
MOV HACC,A ;and set SB14 LO. We do not care
MOVL RO,A ;about the other address bits.
MOVX A,@RO ;SB15 goes HI.
RET ;Return to execute the jump.

Now each time we switch to the high order array all we have to do is execute a CALL and a JMP.

System Signals Timing Diagram

mRJ w u u L
ALE

I
SYnEMBUS------------------------------------~~~-------------------------

Note 1: Enable ROM output drivers.

Note 2: ROM address available.

Note 3: RE bus addresses changes during rising edge of ALE and are stable by falling edge.

I

Note 4: No PSEN signal present during last cycle of MOVX instruction, however PSEN is active during both RET cycles.

7-74

TL/DD/8430-2

HARDWARE

Now that we have made the software simple and straight­
forward we have to look at what hardware is necessary to
implement it.

We want to: 1) create two mutually exclusive enable
signals-one for each array,

2) be able to easily use and latch the ad­
dress line signals, and

3) delay the actual switching of arrays
until after the jump instruction, with
the new address, is read into the TMP
from the old array.

Looking at the program we see that the system bus chang-

es after the MOVX instruction with the RET and JMP in­
structions still to be read in from memory before we actually
want to switch arrays. Each instruction takes two cycles,
therefore we want to delay our array switching signal by four
cycles. Looking at all the output signals on the TMP there
are two possible signals to use as a clock to delay the array
switching signal. These signals are PSEN and ALE (see
System Signals Timing Diagram).

The main disadvantage of using ALE is that whereas we
want a rising edge to clock the flip-flops used for the delay,
the ROM addresses are not stable until the falling edge of
ALE. Therefore, we save one inverter by using PSEN.

One possible circuit implementation is shown below:

Circuit Diagram

S814-t>e----.

~--~~~~--~--+-~~-+--~--+-~

I
I
I
I

2184 HI ARRAY

20

2184 LDARMY

~--4----~-~-----~------+-------~ I L __________________ ~

The first flip-flop latches one of the two system bus signals
and the next four delay the array switching signal by four
PSEN cycles. The two inverters are there so that we trigger
off a ONE on the address. If the system bus was configured
as a 16 bit address/data bus (bit 4 of SCR set) then the
latched address lines would have to be used. Since it is
always desirable to have the flip-flops in a known state at
power up, some sort of reset circuitry should be used (e.g.,
by tying the power up reset circuit to the clear inputs on the
flip-flops), or both arrays should have identical reset se­
quences that include setting the flip-flops to a known state.

LOOKING IN DEPTH

Now that we have the basic software format we are going to

TLIDD/B430-3

use and the hardware to implement it, let's look at what is
actually happening (see Array Switching Timing Diagram 1).
The system bus line switches after the first cycle of the
MOVX instruction, but there is no PSEN during the second
cycle. Then there are two PSEN signals during the RET
instruction and two PSEN signals during the JMP instruc­
tion. Just after the second byte of the JMP is read into the
TMP, the arrays are switched, the PC gets loaded with the
new address, and the program continues execution as nor­
mal in the new array from the address indicated in the JMP
instruction. Be sure you understand the Array Switching
Timing Diagram 1 before continuing.

Array Switching Timing Diagram 1

ALE

SI

ARRAYSWIlCH

Note 1: No PSEN signal.

Note 2: Arrays switch here.

Note 3: Valid approximately 360 ns.

V'
MOYX

I
I I
;;r~

TLIDD/B430-4

7-75

l>
z .
w
CD
CD

ADDENDUMS
Although it can be a problem when trying to execute a call across array boundaries, the problem can be easily overcome as
can the confusion that arises when many array switchings occur. All that one needs to do is to organize the program memory
efficiently. One such scheme would be to set aside a block of memory in each bank, such as the last page to use for memory
mapping. For example if we wanted to jump from location HOME in the LO array to location HERE in the HI array and then
back to HOME we could map our memory as shown below:

Lo Array Hi Array

MAIN PROGRAM:

0500 HOME: JMP HERE

0680 HERE: NOP
0681 JMP HOME

ARRAY SWITCHING SUBROUTINE:

0700 SELHA: MOV A.#080 0700 SELLA: MOV A.#040
0702 MOV HACC.A 0702 MOV HACC.A
0703 MOVL. RO.A 0703 MOVL RO.A
0704 MOVX A.@RO 0704 MOVX A.RO
0705 NOP 0705 NOP
0706 NOP 0706 NOP
0707 RET 0707 RET

MEMORY MAP:

070A HERE: CALL SELHA:: ::070A HOllE: CALL SELLA
070C JIIP HOllE -- 070C JMP HERE
070E (CALL SELHA) ;:- -::: 070E (CALL SELHA)
0710 (JIIP addr) -0710 (JMP addr) TL/DD/8430-6

Note: The arrows show which JMP corresponds to which subroutine call. For example the JMP HOME at location 070C in the LO ARRAY corresponds to the
CALL at location 070A in the HI ARRAY. The ()'s show how the CALL's and JMP's can be strung together in a neat pattern.

Notice that there are two NOP's in the subroutine. Since the JMP after the CALL was moved to the new array the two NOP's
were added to the subroutine so that the actual array switching occurs just after the completion of the RET instruction. The
PC is then loaded with the new jump value, loaded in from the new array, and we continue execution as expected. Be sure to
understand the timing before going any further (see Array Switching Timing Diagram 2). The way the memory map is set up it
is easy to organize and keep track of jumps using the pattern indicated in the example. This method also eliminates any
problems with the assembler searching for undefined labels.

7·76

ADDENDUMS (Continued)
Array Switching Timing Diagram 2

'----v------'
MOVX HOP NOP

LOW ARRAY

~
I
I

HI ARRAY

~
JMP HERE NOP

SYSTEM BUS ______ CD_2-'1'<'--_________ -t-! _______________ _

I
ARRAY SWITtH r;'(

----------------------------~I ~----------------

PROGRAM COUNTER 0704

Note 1: Missing PSEN signal.

Note 2: System bus changes.

MOCK
ADDRESS 0705 0706

Note 3: Arrays switch.

Note 4: Now in new array.

I
MOCK 070C

0707 ADDRESS @ 0700
0680

(HERE:)

TL/DD/B430-5

Since there are two extra NaP's in the switching array subroutine the hardware can now be simplified and the system speed
increased by removing two of the flip-flops from the chain. Through the use of the SEL MBx commands the memory map
can be located in any page of any memory bank. For example if we wanted to jump to location HERE in memory bank 2 of
the HI array from memory bank 1 of the La array (after having removed two flip-flops) we could map our memory as shown
below:

Lo Array

ARRAY SWITCHING SUBROUTINE:

0700 SELHA: MOV
0702 MOV
0703 MOVL
0704 MOVX
0705 RET

MEMORY MAP:

070A HERE: CALL
070C
070E

MAIN PROGRAM:

0800 HOME: SEL
0801 JMP

A,#080
HACC,A
RO,A
A,@RO

SELHA

MBO
HERE

0700
0702
0703
0704
0705

070A
070C
070E

Hi Array

SELLA: MOV A,#040
MOV HACC,A
MOVL RO,A
MOVX A,@RO
RET

SEL MB2
JMP HERE

1000 HERE: NOP

If a call into the other array is necessary a similar pattern to that above could be used. Start by replacing the JMP's with
CALL's to the desired subroutine and appropriately placing returns. For example (here it comes) if we wanted to CALL
HOME from HERE we could memory map as shown below.

7-77

» z .
(,,)
CD
CD

~ r---~
~
C") .
z c:c

MAIN PROGRAM:

Lo Array

HOME: NOP
RET

ARRAY SWITCHING SUBROUTINE:

SELHA:

RET

MEMORY MAP:

Hi Array

HERE: NOP
CALL HOME

SELLA:

RET

""-_---------HOME: CALL SELLA
CALL HOME +=
CALL SELHA ____________

-+RET TLIDD/B430-7

~i~ce calling between different memory banks is not straight forward it is advisable to be very careful when doing it, or to
limit calls between arrays only to those that reside in the same memory bank.

HELPFUL HINTS

These schemes can all be modified to multiple arrays and
easier or fancier mappings, however there are a few things
to keep in mind.

1) If using a system bus address line to toggle the array,
don't use that line as part of an actual display memory
address.

2) The MOVX instruction can require more than two cycles
depending on system bus contention, however we are
only concerned with the last two cycles and the P8EN
signals that occur after the system bus line changes.

3) If using interrupts-disable them while switching arrays
and keep all time critical routines in the same array.

4) A demux or decoder can be used to select memory ar­
rays or decode address lines when more than two 8k
arrays are implemented or more than 16k of video RAM
is being used.

5) If extra memory is needed, but a good deal of the pro­
gram memory is data storage, the data could be stored in
the video memory space instead of implementing a new
array.

6) If the TMP is going to be used in a noisy environment or
the system bus is configured as a 16 bit bidirectional bus
a synchronous latch should be used to assure stable lev­
els on 8814 and 8815.

7) The given array switching circuit can be implemented
with the demo board by wiring it into an extension board
that can be plugged into the prom socket U9. Wire the
two new proms in parallel with each other and with a
cable that can plug directly into the prom socket. Howev­
er, instead of using pin 20 from the demo board, use the
two array enable lines as the chip enables for the 2764
proms.

Also use 8812 and 8813 instead of 8814 and 8815.

7-78

	Display /Terminal Management Processor (TMP)
	Contents
	TM
	NS405 Series Display Terminal Management Processor (TMP)
	AB-14 Throughput Considerations in NS405 System Planning
	AB-16 NS405-Series TMP External Interrupt Process
	AN-354 TMP Rowand Attribute Table Lookup Operat
	AN-355 TMP-Dynamic RAM Interfac
	AN-367 TMP External Character Generation
	AN-369 NS405 TMP Logic Analy
	AN-374 Building an Inexpensive But Powerful Color Terminal
	AN-399 TMP Extended Program Memo

